## Weakening Faithfulness: Some Heuristic Causal Discovery Algorithms

Zhalama<sup>1</sup> Jiji Zhang<sup>2</sup> · Wolfgang Mayer<sup>1</sup>

<sup>1</sup> University of South Australia

<sup>2</sup> Lingnan University

#### Causal DAG

- Causal DAG  $G = \langle V, E \rangle$ Each edge  $X \rightarrow Y$  represents a direct causal relation that X is a direct cause of Y relative to V
- Assumption: V is causally sufficient



#### **Causal Inference Assumptions**

• Causal Markov Condition: Every conditional independence statement entailed by the causal DAG over V is satisfied by the joint probability distribution of V.

i.e., X and Y are (causally) d-separated by  $Z \Longrightarrow X \perp Y \mid Z$ .



#### **Causal Inference Assumptions**

• Faithfulness assumption: Every conditional independence statement satisfied by the joint distribution of *V* is entailed by the causal DAG over *V*.

i.e.,  $X \perp Y \mid Z \implies X$  and Y are (causally) d-separated by Z.



### **Causal Faithfulness Assumption**

- More dubious than Causal Markov assumption.
- Even if Faithfulness is not exactly violated, the distribution may be sufficiently close to being unfaithful to make trouble with finite data.
- Can we **relax the Faithfulness assumption** and **adjust the causal discovery method** to make it more robust against unfaithfulness?
  - Adjacency unfaithfulness
  - Orientation unfaithfulness

#### Adjacency Faithfulness Violation

• Adjacency-Faithfulness: For every  $X, Y \in V$ , if X and Y are adjacent in the true causal DAG, then they are not independent conditional on any subset of  $V \setminus \{X, Y\}$ .



The distribution satisfies one extra independence  $A \perp B \mid \emptyset$ 

True Graph

### PC under Adjacency Faithfulness Failure

- **1. Adjacency step**: for every pair of variables *X* and *Y*, search for a set of variables given which *X* and *Y* are conditionally independent, and infer them to be adjacent if and only if no such set is found.
  - Justified by adjacency faithfulness assumption
- 2. Orientation step: for every unshielded triple (*X*; *Y*; *Z*), infer that it is a collider if and only if the set found in step 1 that renders *X* and *Z* conditionally independent does not include *Y* 
  - Justified by orientation faithfulness assumption



True Graph







- Searches for a pattern that maximizes a score over the space of patterns
- Proceeds from one pattern to a neighbor by adding or removing edges, one at a time
- Forward phase:
  - Greedily add edges until the score cannot improve further
- Backward phase:
  - Remove edges until the score cannot improve further

 GES seems to be robust against Adjacency unfaithfulness



### Orientation Faithfulness Violation

- Orientation-Faithfulness: For every unshielded triple (X, Y, Z)
  - If  $X \to Y \leftarrow Z$  is a collider, then X and Z are not conditionally independent given any subset of  $V \setminus \{X, Z\}$  that includes Y.
  - Otherwise, X and Z are not conditionally independent given any subset of V\{X, Z} that excludes Y.



True Graph

#### GES under Orientation Faithfulness Violation



 $A \perp D | \{B, C\}$  $B \perp C \mid \{A\}$ 

The distribution satisfies one extra independence  $A \perp D | \emptyset$ 





#### $\alpha$ –Conservative Orientation

 Given a skeleton and a unshielded triple therein, consider all subsets of the variables adjacent to X or of the variables that are adjacent to Z that render (X, Z) consitionally independent

number of sets that include Y

number of sets

- If  $r \leq \alpha$ , the triple is marked as a collider.
- If  $r \ge 1 \alpha$ , the triple is marked as a non-collider.
- Otherwise it is ambiguous
- CPC(Ramsey et al, 2006) :  $\alpha = 0$  : too cautious
- Majority rule orientation (Colombo and Maathuis, 2014) :  $\alpha = 0.5$  : not conservative enough
- We use  $\alpha = 0.4$

### Proposed Hybrid Methods

- PC+GES
  - Run PC first, use the output pattern as a starting point for GES
  - Mitigate PC's vulnerability to adjacency faithfulness violations
- GES+c
  - Run GES first, then apply the  $\alpha$ -conservative orientation rules and Meek's orientation rules (Meek, 1996)
  - Mitigate GES's vulnerability to orientation faithfulness violations
- PC+GES+c
  - Run PC+GES first, then apply the  $\alpha$ -conservative orientation rules and Meek's orientation rules (Meek, 1996)
  - Mitigate both vulnerabilities

# Simulations – Examples of exact Faithfulness violations

Adjacency unfaithfulness



#### **Orientation unfaithfulness**



|                 | РС   | PC-<br>stable | PC+GES | GES  | ММНС |
|-----------------|------|---------------|--------|------|------|
| True adj. rate  | 0.75 | 0.75          | 0.95   | 0.93 | 0.76 |
| False adj. rate | 0.01 | 0.01          | 0.02   | 0.06 | 0.02 |

| GES                  | GES+c | РС   | СРС  | ММНС |  |  |  |
|----------------------|-------|------|------|------|--|--|--|
| 0.35                 | 0.96  | 0.49 | 0.99 | 0.56 |  |  |  |
| Mean Arrow Precision |       |      |      |      |  |  |  |

More comprehensive simulations(without exact unfaithfulness)

- Number of variables (dimension)  $\in \{10, 20, 30, 40\}$
- Expected vertex degree (sparsity)  $\in \{2, 4\}$
- Sample size  $\in \{200, 500, 1000, 5000\}$
- For each setting, 100 random DAGs are generated, and on each DAG a linear Gaussian model is randomly built:
  - Edge coefficients are uniformly drawn from [-1, -0.1] ∩ [0.1, 1]
  - Variances of error terms are uniformly drawn from [0.5, 1]
- From each model, 50 datasets at each sample size are generated.

#### Adjacency on Random Graphs



#### Orientation on Random Graphs



#### Conclusion and Outlook

- PC and GES are vulnerable to violations of Faithfulness
- Heuristic hybrid algorithms shown to be able to mitigate some adjacency and orientation issues
  - even if faithfulness is not exactly violated
- Try to develop efficient methods for causal inference under weaker faithfulness assumptions (e.g. triangle faithfulness)