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Causal	DAG

• Causal	DAG	𝐺 = 𝑉, 𝐸
Each	edge	𝑋 → 𝑌 represents	a	direct	causal	relation	that	𝑋 is	a	direct	
cause	of	𝑌 relative	to	𝑉
• Assumption:	𝑉 is	causally	sufficient

Causal	Sufficiency
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Causal	Inference	Assumptions

• Causal	Markov	Condition:	Every	conditional	independence	statement	
entailed	by	the	causal	DAG	over	𝑉	is	satisfied	by	the	joint	probability	
distribution	of	𝑉.	
i.e.,	𝑋	and	𝑌	are	(causally)	d-separated	by	Z ⟹ 𝑋 ⊥ 𝑌	|	𝑍.

Causal	Markov
Assumption

Causal	Sufficiency
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Causal	Inference	Assumptions

• Faithfulness	assumption:	Every	conditional	independence	statement	
satisfied	by	the	joint	distribution	of	𝑉	is	entailed	by	the	causal	DAG	
over	𝑉.	

i.e.,	𝑋 ⊥ 𝑌	|	𝑍	 ⟹ 	𝑋	and	𝑌	are	(causally)	d-separated	by	𝑍.	

Causal	Markov
Assumption
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Causal	Faithfulness	Assumption

• More	dubious	than	Causal	Markov	assumption.
• Even	if	Faithfulness	is	not	exactly	violated,	the	distribution	may	be	
sufficiently	close	to	being	unfaithful	to	make	trouble	with	finite	data.

• Can	we	relax	the	Faithfulness	assumption	and	adjust	the	causal	
discovery	method to	make	it	more	robust	against	unfaithfulness?
• Adjacency	unfaithfulness	
• Orientation	unfaithfulness



Adjacency	Faithfulness	Violation

• Adjacency-Faithfulness:	For	every	𝑋, 𝑌 ∈ 𝑉,	if	𝑋 and	𝑌 are	adjacent	in	
the	true	causal	DAG,	then	they	are	not	independent	conditional	on	
any	subset	of	𝑉\{𝑋, 𝑌}.

The	distribution	satisfies	
one	extra	independence	
𝐴 ⊥ 𝐵	|	∅
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𝐴 ⊥ 𝐷	|	{C}
𝐶 ⊥ 𝐵	|	{𝐴, 𝐷}



PC	under	Adjacency	Faithfulness	Failure	

1. Adjacency	step:		for	every	pair	of	
variables	𝑋	and	𝑌,	search	for	a	set	of	
variables	given	which	𝑋	and	𝑌	are	
conditionally	independent,	and	infer	
them	to	be	adjacent	if	and	only	if	no	
such	set	is	found.	
• Justified	by	adjacency	faithfulness	
assumption

2. Orientation	step:		for	every	
unshielded	triple	(𝑋; 	𝑌; 	𝑍),	infer	
that	it	is	a	collider	if	and	only	if	the	
set	found	in	step	1	that	renders	
𝑋	and	𝑍	conditionally	independent	
does	not	include	𝑌
• Justified	by	orientation	faithfulness	

assumption

P:	𝐴 ⊥ 𝐵	|	∅
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GES

• Searches	for	a	pattern	that	
maximizes	a	score	over	the	space	
of	patterns
• Proceeds	from	one	pattern	to	a	
neighbor	by	adding	or	removing	
edges,	one	at	a	time
• Forward	phase:

• Greedily	add	edges	until	the	score	
cannot	improve	further

• Backward	phase:
• Remove	edges	until	the	score	cannot	
improve	further

• GES	seems	to	be	robust	against	
Adjacency	unfaithfulness
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Orientation	Faithfulness	Violation

• Orientation-Faithfulness:	For	every	unshielded	triple	(𝑋, 𝑌, 𝑍)
• If	𝑋 → 𝑌 ← 	𝑍 is	a	collider,	then	X	and	Z	are	not	conditionally	independent	
given	any	subset	of	𝑉\{𝑋, 𝑍} that	includes	𝑌.
• Otherwise,	X	and	Z	are	not	conditionally	independent	given	any	subset	of	
𝑉\{𝑋, 𝑍} that	excludes	𝑌.

The	distribution	satisfies	
one	extra	independence	
𝐴 ⊥ 𝐷	|	∅

𝐴 ⊥ 𝐷	|	{𝐵, 𝐶}
𝐵 ⊥ 𝐶	|	{𝐴}
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GES	under	Orientation	Faithfulness	Violation

The	distribution	satisfies	
one	extra	independence	
𝐴 ⊥ 𝐷|∅
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𝐴 ⊥ 𝐷|{𝐵, 𝐶}
𝐵 ⊥ 𝐶	|	{𝐴}
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𝛼 −Conservative	Orientation
• Given	a	skeleton	and	a	unshielded	triple	therein,	consider	all	subsets	of	the	variables	
adjacent	to	𝑋 or	of	the	variables	that	are	adjacent	to	𝑍 that	render	
(𝑋, 𝑍)	consitionally	independent

• If	𝑟 ≤ 𝛼,	the	triple	is	marked	as	a	collider.
• If	𝑟 ≥ 1 − 𝛼,	the	triple	is	marked	as	a	non-collider.
• Otherwise	it	is	ambiguous

• CPC(Ramsey	et	al,	2006)	:	𝛼 = 0 :	too	cautious
• Majority	rule	orientation(Colombo	and	Maathuis,	2014)	:	𝛼 = 0.5	:	not	conservative	
enough	

• We	use	𝛼 = 0.4

𝑟 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠	𝑡ℎ𝑎𝑡	𝑖𝑛𝑐𝑙𝑢𝑑𝑒	𝑌

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠



Proposed	Hybrid	Methods

• PC+GES
• Run	PC	first,	use	the	output	pattern	as	a	starting	point	for	GES
• Mitigate	PC’s	vulnerability	to	adjacency	faithfulness	violations

• GES+c
• Run	GES	first,	then	apply	the	𝛼-conservative	orientation	rules	and	Meek’s	
orientation	rules(Meek,	1996)
• Mitigate	GES’s	vulnerability	to	orientation	faithfulness	violations

• PC+GES+c
• Run	PC+GES	first,	then	apply	the	𝛼-conservative	orientation	rules	and	Meek’s	
orientation	rules(Meek,	1996)
• Mitigate	both	vulnerabilities



Simulations	– Examples	of	exact	Faithfulness	
violations

Adjacency	unfaithfulness

GES GES+c PC CPC MMHC

0.35 0.96 0.49 0.99 0.56

Orientation	unfaithfulness
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Mean	Arrow	Precision

PC PC-
stable

PC+GES GES MMHC

True	adj.	rate 0.75 0.75 0.95 0.93 0.76

False	adj.	rate 0.01 0.01 0.02 0.06 0.02



More	comprehensive	simulations(without	
exact	unfaithfulness)

• Number	of	variables (dimension) ∈ {10, 20, 30, 40}
• Expected	vertex	degree	(sparsity)	∈ {2, 4}
• Sample	size	∈ {200, 500, 1000, 5000}
• For	each	setting,	100	random	DAGs	are	generated,	and	on	each	DAG	a		
linear	Gaussian	model	is	randomly	built:
• Edge	coefficients	are	uniformly	drawn	from	[-1,	-0.1]	∩	[0.1,	1]
• Variances	of	error	terms	are	uniformly	drawn	from	[0.5,		1]

• From	each	model,	50	datasets	at	each	sample	size	are	generated.		



Adjacency	on	Random	Graphs



Orientation	on	Random	Graphs



Conclusion	and	Outlook

• PC	and	GES	are	vulnerable	to	violations	of	Faithfulness	
• Heuristic	hybrid	algorithms	shown	to	be	able	to	mitigate	some	
adjacency	and	orientation	issues
• even	if	faithfulness	is	not	exactly	violated

• Try	to	develop	efficient	methods	for	causal	inference	under	weaker	
faithfulness	assumptions	(e.g.	triangle	faithfulness)


