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Causal DAG

e Causal DAG G = (V,E)
Each edge X — Y represents a direct causal relation that X is a direct
cause of Y relativeto V

* Assumption: V is causally sufficient
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Causal Inference Assumptions

e Causal Markov Condition: Every conditional independence statement
entailed by the causal DAG over V is satisfied by the joint probability
distribution of V.

i.e., X and Y are (causally) d-separatedbyZ =X 1L Y | Z.

Causal Markov
Assumption
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Causal Inference Assumptions

* Faithfulness assumption: Every conditional independence statement
satisfied by the joint distribution of V is entailed by the causal DAG
over V.

i.e, X LY |Z = XandY are (causally) d-separated by Z.
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Causal Faithfulness Assumption

* More dubious than Causal Markov assumption.

* Even if Faithfulness is not exactly violated, the distribution may be
sufficiently close to being unfaithful to make trouble with finite data.

* Can we relax the Faithfulness assumption and adjust the causal
discovery method to make it more robust against unfaithfulness?
* Adjacency unfaithfulness
* Orientation unfaithfulness



Adjacency Faithfulness Violation

* Adjacency-Faithfulness: Forevery X,Y € V, if X and Y are adjacent in
the true causal DAG, then they are not independent conditional on
any subset of V\{X,Y}.

A L1 D|{C} The distribution satisfies
C LB|{A D} one extra independence
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PC under Adjacency Faithfulness Failure

1. Adjacenc&step: for every pair of
variables X and Y, search for a set of
variables given which X and Y are
conditionally independent, and infer
them to be adjacent if and only if no
such set is found.

« Justified by adjacency faithfulness PC

assumption True Graph \/

2. Orientation step: for ever
unshielded triple (X; Y; Z), infer
that it is a collider if and on(I}/ if the
set found in step 1 that renders
X and Z conditionally independent
does not include Y

* Justified by orientation faithfulness
assumption




GES

e Searches for a pattern that * GES seems to be robust against
maximizes a score over the space Adjacency unfaithfulness
of patterns

* Proceeds from one pattern to a
neighbor by adding or removing
edges, one at a time

Forward phase:
* Greedily add edges until the score
cannot improve further
Backward phase:

 Remove edges until the score cannot
improve further




Orientation Faithfulness Violation

* Orientation-Faithfulness: For every unshielded triple (X, Y, Z)

e IfX - Y « Zisacollider, then X and Z are not conditionally independent
given any subset of V'\{X, Z} that includes Y.

* Otherwise, X and Z are not conditionally independent given any subset of
V\{X, Z} that excludes Y.

ALD]|{B,C} The distribution satisfies
B 1L C|{A} one extra independence
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GES under Orientation Faithfulnhess Violation

A L D|B,C} The distribution satisfies
B 1L C|{A} one extra independence
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a —Conservative Orientation

* Given a skeleton and a unshielded triple therein, consider all subsets of the variables
a)d(jacent to X or of the variables that are adjacent to Z that render
(X, Z) consitionally independent

number of sets that include Y
T =

number of sets

* If r < a, the triple is marked as a collider.
e Ifr =2 1 — a, the triple is marked as a non-collider.
e Otherwise it is ambiguous

 CPC(Ramsey et al, 2006) : @« = 0 : too cautious

. MajoriI:c]y rule orientation(Colombo and Maathuis, 2014) : @ = 0.5 : not conservative
enoug

e Weusea = 0.4



Proposed Hybrid Methods

* PC+GES

* Run PC first, use the output pattern as a starting point for GES
* Mitigate PC’s vulnerability to adjacency faithfulness violations

e GES+cC

* Run GES first, then apply the a-conservative orientation rules and Meek’s
orientation rules(Meek, 1996)

* Mitigate GES’s vulnerability to orientation faithfulness violations

e PC+GES+c

* Run PC+GES first, then apply the a-conservative orientation rules and Meek’s
orientation rules(Meek, 1996)

* Mitigate both vulnerabilities



Simulations — Examples of exact Faithfulness
violations

Adjacency unfaithfulness Orientation unfaithfulness

PC- PC+GES MMHC

True adj.rate 0.75 0.75 0.95 0.93 0.76 0.3 0.96 0.49 0.99 0.56
False adj. rate 0.01 0.01 0.02 0.06 0.02 Mean Arrow Precision




More comprehensive simulations(without
exact unfaithfulness)

* Number of variables (dimension) € {10, 20, 30,40}
* Expected vertex degree (sparsity) € {2, 4}
* Sample size € {200,500,1000,5000}

* For each setting, 100 random DAGs are generated, and on each DAG a
linear Gaussian model is randomly built:

* Edge coefficients are uniformly drawn from [-1, -0.1] N [0.1, 1]
e Variances of error terms are uniformly drawn from [0.5, 1]

* From each model, 50 datasets at each sample size are generated.



Adjacency on Random Graphs
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Orientation on Random Graphs
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Conclusion and Outlook

e PC and GES are vulnerable to violations of Faithfulness

* Heuristic hybrid algorithms shown to be able to mitigate some
adjacency and orientation issues
e even if faithfulness is not exactly violated

* Try to develop efficient methods for causal inference under weaker
faithfulness assumptions (e.g. triangle faithfulness)



