Identifiability of Subsampled/Mixed-Frequency Structural VAR models

Alex Tank
University of Washington
Joint work with Emily Fox and Ali Shojaie

time

time

Causes of Subsampling and Mixed Frequencies

- Costly data collection:
 - GDP
 - Housing prices
 - Other econometric indicators.
 - Biomarker health indicators.
- Technological limitations:
 - fMRI/EEG all sample neural activity at fixed rates.

Previous Work

 Gong et al. 2015 study subsampled VAR models with independent errors.

$$x_t = \mathbf{A}x_{t-1} + e_t$$

Previous Work

 Gong et al. 2015 study subsampled VAR models with independent errors.

$$x_t = \mathbf{A}x_{t-1} + e_t$$

 We extend their framework to deal with mixed subsampling frequencies and correlated errors.

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

$$x_t = \mathbf{A} x_{t-1} + \mathbf{C} e_t$$
 Instantaneous errors, 'shocks' transition matrix structural matrix

Subsampled/MF SVAR

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

Subsampled/MF SVAR

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

Subsampled/MF SVAR

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

Subsampled SVAR process

• When subsampling at same rate:

$$\tilde{x}_t = \mathbf{A}^k \tilde{x}_{t-1} + \mathbf{L} \tilde{e}_t$$

$$\mathbf{L} = (\mathbf{C}, \mathbf{AC}, \dots, \mathbf{A}^{k-1}\mathbf{C})$$

Subsampled SVAR process

When subsampling at same rate:

$$\tilde{x}_t = \mathbf{A}^k \tilde{x}_{t-1} + \mathbf{L} \tilde{e}_t$$

$$\mathbf{L} = (\mathbf{C}, \mathbf{AC}, \dots, \mathbf{A}^{k-1} \mathbf{C})$$

- (\mathbf{A},\mathbf{C}) not identifiable from first two moments of \mathbf{X} !
 - Implies not identifiable if e_t Gaussian.

Non-Gaussian SVAR

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

 $e_t \qquad \textbf{A1} \qquad e_{it} \text{ independent of } e_{jt}$ $e_t \qquad \textbf{A2} \qquad e_{it} \sim p_{e_i} \text{ non-Gaussian}$ $\textbf{A3} \qquad p_{e_i} \neq p_{e_j} \ \ \forall i,j$

 \mathbf{C}

Non-Gaussian SVAR

$$x_t = \mathbf{A}x_{t-1} + \mathbf{C}e_t$$

A1 e_{it} independent of e_{jt} A2 $e_{it} \sim p_{e_i}$ non-Gaussian
A3 $p_{e_i} \neq p_{e_j} \ \forall i,j$

No restrictions \longrightarrow C identifiable (Lanne et al 2015)

Perm. to lower triangular --> DAG and its ordering associated w/C identifiable. (Hyvarninen et al 2010, 2013 and Peters et al 2013)

Subsampled/MF Non-Gaussian SVAR

- $(\mathbf{A}, \mathbf{C}, e, k)$ Non-Gaussian subsampled/MF parameterization
- Identifiability in this setting is a unique map between Distribution of $\tilde{\mathbf{X}} \longleftrightarrow (\mathbf{A}, \mathbf{C}, e, k)$
- Proof technique:
 - Show that if two parameterizations $(\mathbf{A}, \mathbf{C}, e, k)$ and $(\mathbf{A}', \mathbf{C}', e', k)$ lead to same distribution of $\tilde{\mathbf{X}}$ then $(\mathbf{A}, \mathbf{C}) = (\mathbf{A}', \mathbf{C}')$.

Identifiability for Subsampled/MF SVAR

Theorem: Suppose \mathbf{X} is generated according to subsampled/MF SVAR process $(\mathbf{A}, \mathbf{C}, e, k)$ and also admits another representation $(\mathbf{A}', \mathbf{C}', e', k)$. Assume A1-3 hold and $||\mathbf{A}||_2 < 1$

 ${f C}={f C}'P$ where P is a permutation matrix with 1 and -1 entries.

If Clower triangular
$$ightarrow$$
 $\mathbf{C}=\mathbf{C}'$

If
$$p_{e_i}$$
 asymmetric \longrightarrow $(\mathbf{A},\mathbf{C})=(\mathbf{A}',\mathbf{C}')$ and \mathbf{C} full rank

Identifiability for Subsampled/MF SVAR

Theorem: Suppose \mathbf{X} is generated according to subsampled/MF SVAR process $(\mathbf{A}, \mathbf{C}, e, k)$ and also admits another representation $(\mathbf{A}', \mathbf{C}', e', k)$. Assume A1-3 hold and $||\mathbf{A}||_2 < 1$

 $\mathbf{C} = \mathbf{C}'P$ where P is a permutation matrix with 1 and -1 entries.

If Clower triangular
$$ightarrow$$
 $\mathbf{C}=\mathbf{C}'$

If
$$p_{e_i}$$
 asymmetric \longrightarrow $(\mathbf{A},\mathbf{C})=(\mathbf{A}',\mathbf{C}')$ and \mathbf{C} full rank

Corollary: If the instantaneous interactions follow a DAG structure, C may be permuted to lower triangular, DAG structure and ordering identifiable from \widetilde{X} .

Bayesian Estimation: Gibbs Sampler

Non-Gaussianity:

- Model the e_{it} as a mixture of Gaussians with 2 components.
- Introduce auxiliary z_{it} binary variables such that:

$$e_{it} = z_{it} w_{it}^{1} + (1 - z_{it}) w_{it}^{2}$$

$$w_{it}^{1} \sim \mathcal{N}(\mu_{i}^{1}, \tau_{i}^{1}) \qquad w_{it}^{2} \sim \mathcal{N}(\mu_{i}^{2}, \tau_{i}^{2})$$

Subsampling:

• Treat the unobserved data in ${f X}$ as *missing*. Sampler will impute missing values.

Bayesian Estimation: Gibbs Sampler

Place conjugate priors on all parameters $\Theta = (\mathbf{A}, \mathbf{C}, \mu, \tau, \pi)$

Gibbs sampler steps:

1. Jointly impute missing data: $(\mathbf{X}, \mathbf{Z}) \sim p(\mathbf{X}, \mathbf{Z} | \tilde{\mathbf{X}}, \Theta)$

- 2. Standard conditional Gibbs updates for all Θ .
 - 1. Sample C as in Wozniak et al 2015.

Bayesian Estimation: Gibbs Sampler

- Simulation with subsampling rate k = 2.
- C = I, T = 403

Conclusion

- Extended identifiability results of Gong et al 2015 to structural VAR models with mixed subsampling.
- Allows instantaneous covariance and interactions.
- May identify the structural matrix and transition matrix under non-Gaussian errors.
- Developed Gibbs sampler for inference.

References

- Gong et al. 'Learning Temporal Causal Relations from Subsampled Time Series' ICML 2015
- Wozniak et al. 'Assessing Monetary Policy Models: Bayesian Inference for Heteroskedastic Structural VARs' 2015