Evaluating Causal Models by Comparing Interventional Distributions

Dan Garant and David Jensen Knowledge Discovery Laboratory College of Information and Computer Sciences University of Massachusetts Amherst

Findings

- Existing approaches to evaluation are strictly structural, and do not characterize the full causal inference pipeline
- Statistical distances can be used to evaluate interventional distribution quality
- Evaluation with statistical distance can lead to different conclusions about algorithmic performance

Overview

- Causal Graphical Models
- Current Approaches to Evaluation
- Evaluation with Statistical Distance
- Comparative Results

Overview

Causal Graphical Models

- Current Approaches to Evaluation
- Evaluation with Statistical Distance
- Comparative Results

Causal Graphical Models

Causal Graphical Models

Use Cases

- Qualitative assessment of causal structure (does intervening on X influence Z?)
- Estimation of interventional distributions P(Z|do(X=10))

Use Cases

- Qualitative assessment of causal structure (does intervening on X influence Z?)
- Estimation of interventional distributions

$$P(Z|\mathrm{do}(X=10))$$

- PC (Spirtes et al. 2000): Use conditional independence tests to derive constraints on possible structure
- GES (Chickering 2002): Perform local updates in order to maximize a global score on structures, maximizing structure likelihood
- MMHC (Tsamardinos et al. 2006): Combines constraint-based and score-based approaches

Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of machine learning research, 3(Nov), 507-554.

Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search. MIT press.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine learning, 65(1), 31-78.

Need for Quantitative Evaluation

- How well do these algorithms work in practice? Under what circumstances do they perform better or worse?
- Which algorithm should I use? Does performance depend on domain characteristics?

Overview

- Causal Graphical Models
- Current Approaches to Evaluation
- Evaluation with Statistical Distance
- Comparative Results

Structural Hamming Distance (SHD)

Structural Intervention Distance (SID)

- Graph mis-specification is not fundamentally related to quality of a causal model (Peters & Bühlmann 2015)
 - Including superfluous edges does not necessarily bias a causal model
 - Reversing or omitting edges can potentially induce bias in many interventional distributions
- Structural intervention distance: Count number of misspecified pairwise interventional distributions

Peters, J., & Bühlmann, P. (2015). Structural intervention distance for evaluating causal graphs. Neural computation.

SHD vs SID

Problems with Structural Distances

- Structural measures fail to characterize the full causal inference pipeline. To reach an interventional distribution, we also need to learn parameters and perform inference
- Some interventional distributions may be more biased than others
- In finite sample settings, variance matters too. A biased model with low variance may be better than an unbiased model with high variance

Statistical Effects of Model Errors

Statistical Effects of Model Errors

Over-specification, SHD=2, SID=0

Overview

- Causal Graphical Models
- Current Approaches to Evaluation
- Evaluation with Statistical Distance
- Comparative Results

Interventional Distribution Quality

- Ultimately, we care about the quality of interventional distributions rather than only the quality of the graph structure
- To evaluate distributions, we need:
 - Parameterized models
 - Inference algorithms
 - A measure of distributional accuracy

Total Variation Distance

$$TV_{P,\hat{P},T=t}(O) = \frac{1}{2} \sum_{o \in \Omega(O)} \left| P\left(O = o | do(T = t)\right) - \hat{P}\left(O = o | do(T = t)\right) \right|$$

Enumerating Distributions

• To evaluate an entire DAG, we need to enumerate pairs of treatments and outcomes

$$TV_{DAG}(G,\hat{G}) = \sum_{V \in \mathbf{V}(G), V' \in \mathbf{V}(G) \setminus \{V\}} TV_{P_G,P_{\hat{G}},v'=v'_*}(V)$$

 Performing these inferences is expensive, but these are precisely the inferences that must be performed to use the model

Overview

- Causal Graphical Models
- Current Approaches to Evaluation
- Evaluation with Statistical Distance
- Comparative Experiments

Synthetic Domains

- Logistic: Binary data, each node is a logistic function of its parents
- Linear-Gaussian: Real-valued data, values for each node are normally distributed around a linear combination of parent values
- Dirichlet: Discrete data, CPD for each node is sampled from a Dirichlet distribution determined by parent values

Software Domains

- We instrumented and performed factorial experiments on three software domains:
 - Postgres
 - Java Development Kit
 - Web platforms
- Then, a biased sampling biased sampling routine is used to transform experimental data into observational data
- Ground-truth interventional distributions are computed on experimental data and compared to the distributions estimated from a learned model structure

Software Domains

Over-specification and Underspecification

- We created DAG models derived from the true structure of our real software domains:
 - **Over-specified:** The parent set of each outcome is a strict superset of the true parent set
 - Under-specified: The parent set of each outcome is a strict subset of the true parent set
- Then, we evaluated these models against the ground truth structure and interventional distribution

Domain	Subjects	Model Type	SID: Min, Median, Max			SHD: Min, Median, Max			TV: Min, Median, Max		
JDK	473	Over-specify	0	0	0	1	3	3	0.04	0.17	0.21
		Under-specify	4	5	9	2	2	4	0.22	0.41	0.58
Postgres	5,000	Over-specify	0	0	0	0	1	2	0.00	0.06	0.09
		Under-specify	4	6	8	3	4	5	0.17	0.35	0.61
HTTP	2,599	Over-specify	0	0	0	1	2	4	0.06	0.06	0.09
		Under-specify	2	6	10	1	3	4	0.22	0.25	0.30

Relative Performance of Algorithms

ΤV

Revisiting Synthetic Data Generation

Conclusions

- Existing approaches to evaluation are strictly structural, and do not characterize the full causal inference pipeline
- Statistical distances can be used to evaluate interventional distribution quality
- Evaluation with statistical distance can lead to different conclusions about algorithmic performance