
On Causal Analysis for Heterogeneous Networks

Katerina Marazopoulou, David Arbour, David Jensen

August 2017

University of Massachusetts Amherst 
College of Information and Computer Sciences

KDD Workshop on Causal Discovery



Katerina Marazopoulou On Causal Analysis for Heterogeneous Networks 2

source: Visual Complexity

Causal inference in networks: How is the behavior of an individual affected by his/her peers?
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source: Visual Complexity

How does the presence of multiple relationship types affect causal analysis?
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Outline

• Background: Causal effect estimation on networks 

• Causal effect estimation in heterogeneous networks 

• Experiments on synthetic data 

• Application on real-world dataset
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Causal Effect Estimation in Networks
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friends
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• Population of n individuals that form an undirected graph 

• Binary treatment T and outcome O

Causal Effect Estimation in Networks
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friends

Oi(T = t) t 2 {0, 1}nwhere

• The outcome of a node depends on the global treatment 
assignment:

⌧(1,0) =
1

n

nX

i=1

E[Oi(T = 1)�Oi(T = 0)]

• ATE between global treatment and global control
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Causal effect estimation

1. Treatment assignment 

2. Exposure model: When an individual is considered to be treated 

3. Analysis: How to estimate the causal quantity of interest
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Estimation procedure for causal inference:
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Gui, Basin, Han. WWW 2015

Estimation procedure for causal inference:

Causal effect estimation
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1. Treatment assignment 

2. Exposure model: Fraction neighborhood exposure [Gui et al. 2015] 

3. Analysis: Linear regression adjustment [Gui et al. 2015]
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The Gui et al. framework

• Fraction neighborhood exposure model: 

The response function depends on a node’s own treatment assignment 
and the proportion of its treated peers
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g(Ti,�i) = ↵+ �Ti + ��i

⌧(1,0) = g(Ti = 1,�i = 1)� g(Ti = 0,�i = 0) = � + �• ATE: 
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Heterogenous Network
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friends 
coworkers
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Response function
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Heterogeneous networks:

g(Ti,�i) = ↵+ �Ti + ��i

gf,c(Ti,�i) = ↵+ �Ti + �f�f
i + �c�c

i

Homogeneous networks:
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Sets of peers

• There are more options than friends and coworkers. 

• We can consider any combination of non-overlapping sets of peers 

friends and coworkers 

friends only 

friends or coworkers but not both
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gf,c(Ti,�i) = ↵+ �Ti + �f�f
i + �c�c

i
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Peer-sets of interest

• Friends (homogeneous network) 

• Coworkers (homogeneous network)  

• Friends or coworkers (union as a homogeneous network) 

• Disjoint 

• Friends-coworkers
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Sets of peers we consider
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Peer sets of interest: Where are they used?

• Response functions 
• ATE estimators 
• Outcome generation

15

Used for:
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Peer sets of interest: Where are they used?

• Response functions 

• ATE estimators 

• Outcome generation
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Friends-coworkers

Used for:

Friends

A

B

C

D

Coworkers
gf,c(Ti,�i) = ↵+ �Ti+�f�f

i +�c�c
i

⌧f,c = �+�f+�c

Oi = w0 + w1Ti+wf
2

F [·, i]>Ot

DF
i

+wc
2
C[·, i]>Ot

DC
i

+ ✏
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How does ignoring/mis-specifying the type of relationships 
affect estimation of causal effects?
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Experiments (synthetic data)

Goal: impact on estimation of causal effects

• Generation of graphs 

Erdos-Renyi 

Watts-Strogatz 

Stochastic block model 

• Generation of treatment values 

1. Independent assignment for every node 

2. Graph cluster randomization [Ugander et al. 2013]

18

Ugander, Karrer, Backstrom, Kleinberg. KDD 2013
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• Generation of outcome values 

1. Outcome Interference 

2. Treatment Interference

Experiments (synthetic data)

Oi,t+1 ⇠ w0 + w1Ti + f(O
peers of i,t) + ✏

Oi ⇠ w0 + w1Ti + f(T
peers of i

) + ✏

where: ✏ = �✏N (0, 1)
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Experiment configuration: 

• Graph model: Watts-Strogatz 

• Treatment assignment: Graph cluster randomization 

• Treatment probability: 0.5 

• Outcome generation: Treatment interference

Results
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Experiment configuration: 

• Graph model: Watts-Strogatz 

• Treatment assignment: Graph cluster randomization 

• Treatment probability: 0.5 

• Outcome generation: Treatment interference

Results
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Experiment configuration: 

• Graph model: Watts-Strogatz 

• Treatment assignment: Graph cluster randomization 

• Treatment probability: varying

• Outcome generation: Treatment interference

Results
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Model selection

Given a set of alternative models,  
is it possible to identify the true generating model?

25

Procedure: 

• Generate synthetic networks and synthetic data (as before). 

• Compute BIC for each of the five alternative models. 

• Select model with the lowest BIC.
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Model selection
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Model selection
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Random Random Random
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Real data

• Study on the diffusion of micro financing loans through various social networks 

• Survey conducted in 75 villages in southern India 

• Village-level survey and follow-up survey on a subsample of individuals for each village 

• Individual surveys identify 13 types of social relationships (e.g., friends, relatives, 
borrowing money from, going to temple with) 

• Individual’s attributes (age, gender, etc)

28
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Real heterogeneous network

29
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Experimental setup for real data

• Several pairs of social relationships 

• Combinations of treatment-outcome variables 

• Estimate effect using different response functions

30
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Summary

• Recent work has extended causal inference frameworks for network data. 

• We address the case of heterogeneous networks and causal effect estimation in this 
framework. 

• Mis-specifying the relational structure of causal dependence can lead to significant bias. 

• Model selection for distinguishing among candidate response functions.

32
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Directions for future work

33

• Formal characterization of bias and variance of ATE estimators for heterogeneous 
networks 

• Interactions of relational semantics (effect present from multiple relational phenomena) 

• Measure of model selection for relational data 

• Fully automated methods for choosing appropriate response functions 

• Extending A/B testing framework for heterogeneous networks
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Questions?

Thank you!
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