University of Massachusetts Amherst College of Information and Computer Sciences

On Causal Analysis for Heterogeneous Networks

Katerina Marazopoulou, David Arbour, David Jensen

KDD Workshop on Causal Discovery August 2017

Causal inference in networks: How is the behavior of an individual affected by his/her peers?

Katerina Marazopoulou

How does the presence of multiple relationship types affect causal analysis?

Katerina Marazopoulou

source: Visual Complexity

Outline

- Background: Causal effect estimation on networks
- Causal effect estimation in heterogeneous networks
- Experiments on synthetic data
- Application on real-world dataset

Causal Effect Estimation in Networks

Katerina Marazopoulou

friends

Causal Effect Estimation in Networks

- Population of n individuals that form an undirected graph
- Binary treatment T and outcome O
- The outcome of a node depends on the global treatment assignment:

$$O_i(\mathbf{T} = \mathbf{t})$$
 where $\mathbf{t} \in \{0, 1\}$

ATE between global treatment and global control

$$\tau(\mathbf{1}, \mathbf{0}) = \frac{1}{n} \sum_{i=1}^{n} E[O_i(\mathbf{T} = \mathbf{1})]$$

 ζ^n

 $-O_i(\mathbf{T} = \mathbf{0})$]

friends

Causal effect estimation

Estimation procedure for causal inference:

- Treatment assignment 1.
- 2.
- 3. Analysis: How to estimate the causal quantity of interest

Exposure model: When an individual is considered to be treated

On Causal Analysis for Heterogeneous Networks

7

Causal effect estimation

Estimation procedure for causal inference:

- Treatment assignment 1.
- 2.
- 3. Analysis: Linear regression adjustment [Gui et al. 2015]

Exposure model: Fraction neighborhood exposure [Gui et al. 2015]

Gui, Basin, Han. WWW 2015

The Gui et al. framework

• Fraction neighborhood exposure model:

The response function depends on a node's own treatment assignment and the proportion of its treated peers

$$g(T_i, \lambda_i) = \alpha + \beta T_i + \gamma \lambda_i$$

• ATE:
$$\tau(\mathbf{1}, \mathbf{0}) = g(T_i = 1, \lambda_i = 1) - g(T_i = 0, \lambda_i = 0) = \beta + \gamma$$

Heterogenous Network

Katerina Marazopoulou

friends

coworkers

Homogeneous networks:

 $g(T_i, \lambda_i) = \alpha + \beta T_i + \gamma \lambda_i$

Heterogeneous networks:

 $g_{f,c}(T_i,\lambda_i) = \alpha + \beta T_i + \gamma^f \lambda_i^f + \gamma^c \lambda_i^c$

Katerina Marazopoulou

Response function

- There are more options than friends and coworkers.
- - friends and coworkers
 - friends only
 - friends or coworkers but not both

Sets of peers

 $g_{f,c}(T_i,\lambda_i) = \alpha + \beta T_i + \gamma^f \lambda_i^f + \gamma^c \lambda_i^c$

• We can consider any combination of non-overlapping sets of peers

Peer-sets of interest

- Friends (homogeneous network)
- Coworkers (homogeneous network)
- Friends or coworkers (union as a homogeneous network)
- Disjoint
- Friends-coworkers

Sets of peers we consider

Katerina Marazopoulou

Friends or coworkers

friends coworkers ----

Peer sets of interest: Where are they used?

Used for:

- Response functions
- ATE estimators
- Outcome generation

Peer sets of interest: Where are they used?

Friends-coworkers

Used for:

Response functions

- ATE 6
- Outco

$$g_{f,c}(T_i, \lambda_i) = \alpha + \beta T_i + \gamma^f \lambda_i^f + \gamma^c \lambda_i^c$$

estimators
$$\tau_{f,c} = \beta + \gamma^f + \gamma^c$$

ome generation
$$O_i = w_0 + w_1 T_i + w_2^f \frac{F[\cdot, i]^\top \mathbf{O_t}}{D_i^F} + w_2^c \frac{C[\cdot, i]^\top \mathbf{O_t}}{D_i^C} + \epsilon$$

Katerina Marazopoulou

Katerina Marazopoulou

How does ignoring/mis-specifying the type of relationships affect estimation of causal effects?

Experiments (synthetic data)

Goal: impact on estimation of causal effects

- Generation of graphs
 - Erdos-Renyi
 - Watts-Strogatz
 - Stochastic block model
- Generation of treatment values
 - Independent assignment for every node
 - 2. Graph cluster randomization [Ugander et al. 2013]

Ugander, Karrer, Backstrom, Kleinberg. KDD 2013

Experiments (synthetic data)

- Generation of outcome values
 - 1. Outcome Interference

 $O_{i,t+1} \sim w_0 + w_1$

2. Treatment Interference

 $O_i \sim w_0 + w_1 T$

where: $\epsilon = \beta_{\epsilon} \mathcal{N}(0, 1)$

$$T_i + f(O_{peers_of_i,t}) + \epsilon$$

$$T_i + f(T_{peers_of_i}) + \epsilon$$

Experiment configuration:

- Graph model: Watts-Strogatz
- Treatment assignment: Graph cluster randomization
- Treatment probability: 0.5
- Outcome generation: Treatment interference

Results

_		
Friends or Coworkers -	3.8	-2.8
Friends–Coworkers -	0.1	-11.2
Friends -	-30.2	-46.2
Disjoint -	-6.3	2
Coworkers -	0	-12.2
C	oworkers	Disjoint

Assumed model

Katerina Marazopoulou

On Causal Analysis for Heterogeneous Networks

40

30

20

10

Experiment configuration:

- Graph model: Watts-Strogatz
- Treatment assignment: Graph cluster randomization
- Treatment probability: 0.5
- Outcome generation: Treatment interference

Results

Experiment configuration:

- Graph model: Watts-Strogatz
- Treatment assignment: Graph cluster randomization
- Treatment probability: varying
- Outcome generation: Treatment interference

Results

Exposure model --- Coworkers --- Disjoint --- Friends --- Friends-Coworkers --- Friends or Coworkers

Katerina Marazopoulou

Model selection

Given a set of alternative models, is it possible to identify the true generating model?

Procedure:

- Generate synthetic networks and synthetic data (as before).
- Compute BIC for each of the five alternative models.
- Select model with the lowest BIC.

Model selection

Katerina Marazopoulou

Model selection

- Study on the diffusion of micro financing loans through various social networks
- Survey conducted in 75 villages in southern India
- ulletborrowing money from, going to temple with)
- Individual's attributes (age, gender, etc)

Real data

• Village-level survey and follow-up survey on a subsample of individuals for each village

Individual surveys identify 13 types of social relationships (e.g., friends, relatives,

Real heterogeneous network

Katerina Marazopoulou

- Several pairs of social relationships
- Combinations of treatment-outcome variables
- Estimate effect using different response functions

Experimental setup for real data

Relation1–Relation2 Treatment–Outcome

Katerina Marazopoulou

- Recent work has extended causal inference frameworks for network data.
- We address the case of heterogeneous networks and causal effect estimation in this framework.
- Mis-specifying the relational structure of causal dependence can lead to significant bias.
- Model selection for distinguishing among candidate response functions.

- Formal characterization of bias and variance of ATE estimators for heterogeneous networks
- Interactions of relational semantics (effect present from multiple relational phenomena)
- Measure of model selection for relational data
- Fully automated methods for choosing appropriate response functions
- Extending A/B testing framework for heterogeneous networks

Directions for future work

Questions?

Thank you!

Katerina Marazopoulou

