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Learning Bayesian Networks (BNs)

● BNs constitute a widely used graphical framework for 
representing probabilistic relationships

● Many application in Bayesian Inference and Causal Discovery
● Learning structure is crucial

– Limited work has been done in the presence of both discrete 
and continuous variables
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Learning Bayesian Networks (BNs)

● BNs constitute a widely used graphical framework for 
representing probabilistic relationships

● Many application in Bayesian Inference and Causal Discovery
● Learning structure is crucial

– Limited work has been done in the presence of both discrete 
and continuous variables

Goal: Provide scalable solutions for learning BNs in the 
presence of both discrete and continuous variables 
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Outline

● Bayesian Information Criterion (BIC)
● Mixed Variable Polynomial (MVP) score
● Conditional Gaussian (CG) score
● Adaptations
● Simulations and empirical results
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The Bayesian Information Criterion

Let M be a model and D be a dataset

BIC is an approximation for log p(M|D)
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log p(M∣D)≈−2 lik+dof log n

The Bayesian Information Criterion

Let M be a model and D be a dataset

BIC is an approximation for log p(M|D)

Where lik is the log likelihood, dof are the degrees of freedom,
and n is the number of samples
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log p(M∣D)≈−2 lik+dof log n

The Bayesian Information Criterion

Let M be a model and D be a dataset

BIC is an approximation for log p(M|D)

Where lik is the log likelihood, dof are the degrees of freedom,
and n is the number of samples

Scores a BN as the sum over all BIC calculations 
for each node given its parents
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Outline
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The Mixed Variable 
Polynomial (MVP) score

● Use higher order polynomials to estimate relationships between 
variables

– Allows for nonlinear relationships between continuous 
variables

– Allows for complicated PMFs for discrete variables
Approximates Logistic Regression
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The Mixed Variable 
Polynomial (MVP) score

● Use higher order polynomials to estimate relationships between 
variables

– Allows for nonlinear relationships between continuous 
variables

– Allows for complicated PMFs for discrete variables
Approximates Logistic Regression

● Calculate a log-likelihood and degrees of freedom for BIC
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Modeling a Continuous Child

● Partition according to the discrete parents

– Splits the data into subsets
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● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Calculate a log likelihood and degrees of freedom for each 
subset

Modeling a Continuous Child
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● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Calculate a log likelihood and degrees of freedom for each 
subset

● Aggregate the log likelihood and degrees of freedom terms from 
each subset together

Modeling a Continuous Child
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● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Calculate a log likelihood and degrees of freedom for each 
subset

● Aggregate the log likelihood and degrees of freedom terms from 
each subset together

● Score continuous child using BIC

Modeling a Continuous Child
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● Let X, Y be continuous
● Let A be discrete (|A| = 3)

● Want: likX | Y, A, dofX | Y, A

Y A

X

Modeling a Continuous Child
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likX | Y, A = lik1 + lik2 + lik3 

dofX | Y, A = dof1 + dof2 + dof3
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● Binarize the child A into d (0, 1) variables where d = |A|

Modeling a Discrete Child
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● Binarize the child A into d (0, 1) variables where d = |A|
● Partition according to the discrete parents

– Splits the data into subsets

Modeling a Discrete Child
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● Binarize the child A into d (0, 1) variables where d = |A|
● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Treat the regression lines a components to PMFs for A

Modeling a Discrete Child
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● Binarize the child A into d (0, 1) variables where d = |A|
● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Treat the regression lines a components to PMFs for A
● Calculate a log likelihood and degrees of freedom for each 
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● Binarize the child A into d (0, 1) variables where d = |A|
● Partition according to the discrete parents

– Splits the data into subsets
● Perform regression with the continuous parents for each partition

– Treat the regression lines a components to PMFs for A
● Calculate a log likelihood and degrees of freedom for each 

subset
● Aggregate the log likelihood and degrees of freedom terms from 

each subset together
● Score discrete child using BIC 

Modeling a Discrete Child
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Modeling a Discrete Child

X A

● Let X be continuous
● Let A be discrete (|A| = 3)

● Want: likA | X, dofA | X
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1 2

3

∑
a∈{0,1,2}

p( A=a∣X=x)=1∀ x

p(A=a∣X=x)≥0∀ a, x
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1 2

3

∑
a∈{0,1,2}

p(A=a∣X=x )=1∀ x

p(A=a∣X=x)≥0∀ a, x

– True for the proposed method
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∑
a∈{0,1,2}

p( A=a∣X=x)=1∀ x

p(A=a∣X=x)≥0∀ a, x

– True in the sample limit given some assumptions

– True for the proposed method
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1 2

3

∑
a∈{0,1,2}

p( A=a∣X=x)=1∀ x

p(A=a∣X=x)≥0∀ a, x

– True in the sample limit given some assumptions

Define a procedure to shrink illegal distributions back into the 
domain of probabilities

– True for the proposed method
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1 2

3

        likA | X 

        dofA | X 
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1 2

3

        likA | X 

        dofA | X 

     -2likA | X + dofA | X log n
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Outline

● Bayesian Information Criterion (BIC)
● Mixed Variable Polynomial (MVP) score
● Conditional Gaussian (CG) score
● Adaptations
● Simulations and empirical results
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The Conditional Gaussian (CG) score

● Move all the continuous variables to the left and all the discrete 
variables to the right of the conditioning bar

– Calculate the desired probability using partitioned Gaussian 
and Multinomial distributions
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The Conditional Gaussian (CG) score

● Move all the continuous variables to the left and all the discrete 
variables to the right of the conditioning bar

– Calculate the desired probability using partitioned Gaussian 
and Multinomial distributions

● Calculate a log-likelihood and degrees of freedom for BIC
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Let X, Y be continuous
Let A be discrete

Assume Y, A are 
parents of X

Y A

X

Modeling a Continuous Child
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p(X∣Y , A )=
p(X ,Y , A )

p (Y , A)

Let X, Y be continuous
Let A be discrete

Assume Y, A are 
parents of X

Y A

X

Modeling a Continuous Child
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p(X∣Y , A )=
p(X ,Y , A )

p (Y , A)

1=
p(X ,Y∣A ) p(A)

p (Y∣A) p( A )

1=
p(X ,Y∣A )

p (Y∣A)

Let X, Y be continuous
Let A be discrete

Assume Y, A are 
parents of X

Y A

X

Modeling a Continuous Child
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p(X∣Y , A )=
p(X ,Y , A )

p (Y , A)

1=
p(X ,Y∣A ) p(A)

p (Y∣A) p( A )

1=
p(X ,Y∣A )

p (Y∣A)

Let X, Y be continuous
Let A be discrete

Partitioned
Gaussians

Assume Y, A are 
parents of X

Y A

X

Modeling a Continuous Child
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● Want: likX, Y | A, dofX, Y | A  

                 likY | A, dofY | A

p( X ,Y∣A)

p(Y∣A)

Modeling a Continuous Child

Y A

X
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likY | A, dofY | A
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Have: likX, Y | A, dofX, Y | A  

                 likY | A, dofY | A

p( X ,Y∣A)

p(Y∣A)

Modeling a Continuous Child
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Have: likX, Y | A, dofX, Y | A  
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Have: likX, Y | A, dofX, Y | A  

                 likY | A, dofY | A
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Modeling a Continuous Child
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Let X, Y be continuous
Let A be discrete

Assume X, Y are 
parents of A

X Y

A

Modeling a Discrete Child
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p(A∣X ,Y )=
p(X ,Y , A )

p(X ,Y )

Let X, Y be continuous
Let A be discrete

Assume X, Y are 
parents of A

X Y

A

Modeling a Discrete Child
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p(A∣X ,Y )=
p(X ,Y , A )

p(X ,Y )

1=
p(X ,Y∣A ) p(A)

p(X ,Y )

Let X, Y be continuous
Let A be discrete

Assume X, Y are 
parents of A

X Y

A

Modeling a Discrete Child
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p(A∣X ,Y )=
p(X ,Y , A )

p(X ,Y )

1=
p(X ,Y∣A ) p(A)

p(X ,Y )

Let X, Y be continuous
Let A be discrete

Partitioned
Gaussians

Multinomial

Assume X, Y are 
parents of A

X Y

A

Modeling a Discrete Child
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● Want: likX, Y | A, dofX, Y | A  

          likA, dofA  

                 likX, Y, dofX, Y

p(X ,Y∣A) p(A )

p (X ,Y )

Modeling a Discrete Child

X Y

A
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Have: likX, Y | A, dofX, Y | A  

          likA, dofA  

                 likX, Y, dofX, Y

p(X ,Y∣A) p(A )

p (X ,Y )

Modeling a Discrete Child



 69
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Have: likX, Y | A, dofX, Y | A  
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Modeling a Discrete Child
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Outline

● Bayesian Information Criterion (BIC)
● Mixed Variable Polynomial (MVP) score
● Conditional Gaussian (CG) score
● Adaptations
● Simulations and empirical results
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Adaptations

● Binomial Structure Prior

– Treat the addition of each parent as an independent 
random trial

– Model the prior probability of each parent-child model 
using a Binomial distribution

● Discretization Heuristic

– Discretize continuous parents of discrete children in 
order to use multinomial scoring
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Outline

● Bayesian Information Criterion (BIC)
● Mixed Variable Polynomial (MVP) score
● Conditional Gaussian (CG) score
● Adaptations
● Simulations and empirical results
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Conditional Gaussian Simulation

● Randomly generate a set of variables and edges 
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Conditional Gaussian Simulation

● Randomly generate a set of variables and edges
● Specify a causal ordering over the variables
● In causal order, simulate one variable at a time

– Use multinomial relationships with discretized 
continuous parents for discrete children

– Use partitioned linear Gaussian relationships for 
continuous children 
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Conditional Gaussian Simulation

● Randomly generate a set of variables and edges
● Specify a causal ordering over the variables
● In causal order, simulate one variable at a time

– Use multinomial relationships with discretized 
continuous parents for discrete children

– Use partitioned linear Gaussian relationships for 
continuous children 

Note: For all simulation we simulate discrete-continuous
          at a 50-50 split where discrete variables have a 
          random number of categories between 2 and 5
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Non-linear Simulation

● Randomly generate a set of variables and edges
● Specify a causal ordering over the variables
● In causal order, simulate one variable at a time

– Use multinomial relationships with discretized 
continuous parents for discrete children

– Use partitioned polynomial regression with Gaussian 
noise for continuous children 

Note: For all simulation we simulate discrete-continuous
          at a 50-50 split where discrete variables have a 
          random number of categories between 2 and 5
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Algorithms
CG – Conditional Gaussian

CG d – Conditional Gaussian w/ Discretization Heuristic

MVP 1 – Mixed Variable Polynomial w/ linear basis 

MVP log n – Mixed Variable Polynomial w/ polynomial basis

LR 1 – Logistic Regression w/ linear basis 

LR log n – Logistic Regression w/ polynomial basis
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Statistics
AP – Adjacency Precision

correctly predicted adjacent / predicted adjacent

AR – Adjacency Recall

correctly predicted adjacent / true adjacent

AHP – Arrowhead Precision

correctly predicted arrowhead / predicted arrowhead

AHR – Arrowhead Recall

correctly predicted arrowhead / true arrowhead

T (s) – Computation time (in seconds)

All statistics are averaged over 10 runs on networks of 1000 
instances

As a search fGES was used (Ramsey 2017) (Chickering 2002) 
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MVP vs LR

Avg Deg 4 | 100 Measured | Linear Simulation
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MVP vs LR

Avg Deg 4 | 100 Measured | Non-Linear Simulation
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MVP vs LR

Avg Deg 4 | 100 Measured | Non-Linear Simulation
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MVP vs CG

Avg Deg 4 | 100 Measured | Linear Simulation
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MVP vs CG

Avg Deg 4 | 100 Measured | Non-Linear Simulation
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Scalability

Avg Deg 2 | 500 Measured | Linear Simulation
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Scalability

Avg Deg 2 | 500 Measured | Linear Simulation
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Conclusions

● We present two novel scoring methods for learning BNs in the 
presence of both continuous and discrete variables

– Mixed Variable Polynomial (MVP)
Similar performance to LR but 10-20 times faster

Allows for a more general class of relationship

– Conditional Gaussian (CG)
Quick and effective
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Conclusions

● We present two novel scoring methods for learning BNs in the 
presence of both continuous and discrete variables

– Mixed Variable Polynomial (MVP)
Similar performance to LR but 10-20 times faster

Allows for a more general class of relationship

– Conditional Gaussian (CG)
Quick and effective

● Both scores perform well on simulated data (linear and non-
linear) and scale to networks of at least 500 variables
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Thank You

All presented methods are available
on Tetrad

https://github.com/cmu-phil/tetrad


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

