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Abstract
Most causal discovery algorithms find causal structure among a set of observed variables.
Learning the causal structure among latent variables remains an important open problem,
particularly when using high-dimensional data. In this paper, we address a problem for
which it is known that inputs cause outputs, and these causal relationships are encoded by a
causal network among a set of an unknown number of latent variables. We developed a deep
learning model, which we call a redundant input neural network (RINN), with a modified
architecture and a regularized objective function to find causal relationships between input,
hidden, and output variables. More specifically, our model allows input variables to directly
interact with all latent variables in a neural network to influence what information the
latent variables should encode in order to generate the output variables accurately. In this
setting, the direct connections between input and latent variables makes the latent variables
partially interpretable; furthermore, the connectivity among the latent variables in the
neural network serves to model their potential causal relationships to each other and to
the output variables. A series of simulation experiments provide support that the RINN
method can successfully recover latent causal structure between input and output variables.
Keywords: Deep Learning, Neural Network, Causal Structure Learning, Regularization,
Visualization, Evolutionary Strategy, Cell Biology

1. Introduction

Causal discovery is a type of machine learning that focuses on learning causal relationships
from data, often solely from observational data. In this context, a causal structure is
represented as a graph G = (V,E) containing a set of vertices V and a set of edges E,
and the goal is to infer the data-generating causal structure from data. The majority of
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contemporary causal discovery algorithms involve searching the space of possible structures
to identify the structure supported by the data, and there have been numerous algorithms
developed for this purpose (Cooper, 1999; Spirtes et al., 2000; Lagani et al., 2016; Maathuis
and Nandy, 2016; Peters et al., 2017; Heinze-Deml et al., 2018). Most causal discovery
algorithms find causal structure among the observed variables of a dataset. Learning the
causal structure among latent variables remains an important open problem, particularly
when using high-dimensional data or attempting to leverage a priori knowledge that one set
of observed variables causally influences a non-overlapping (disjoint) set of observed variables.
Latent causal structure can provide additional important insight into the causal mechanisms
of a system or process. Thus, new approaches to discovering latent causal structure are
needed. In this work, we explore the utility of using deep learning models for finding latent
causal structure when the data consist of two sets of variables and it is known a priori that
one set ("inputs") causes the other ("outputs")—and the causal path from inputs to outputs
is mediated by a set of an unknown number of latent variables, among which the causal
structure is also unknown.

This computational problem has important applications, including its application to
cancer biology. Cancer results from somatic genomic alterations (SGAs) (e.g., mutations
in DNA) that perturb the functions of signaling proteins and cause aberrant activation
or inactivation of signaling pathways, which often eventually influences gene expression.
Typically, an SGA only directly affects the function of a single signaling protein, and its
impact is transmitted through a cascade of signaling proteins to influence gene expression.
Since the functional states of signaling proteins in pathways are usually not measured, the
whole signaling system can be thought of as a set of hierarchically organized latent variables of
which we would like to infer how changed states of some signaling proteins causally influence
the state of others. In a cancer cell, when one signaling protein is perturbed by an SGA
event (an observed input variable), it may causally affect the functional states of the proteins
in a pathway (which are not observed) and eventually result in changed gene expression
(observed output variables). Thus, our task is to learn how a set of observed input variables
causally influence a set of observed output variables, through signals transmitted among a
set of latent variables.

In contrast to traditional causal discovery methods, here we explore a modified deep
learning model to learn latent causal relationships. Deep learning represents a family of
machine learning algorithms or strategies that originated from artificial neural networks
(ANN). ANNs represent a framework, loosely inspired by biological neurons, for learning
a function (represented as a set of parameters or weights) that maps inputs to outputs.
An essential characteristic of deep learning models is their ability to learn compositional
representations of the data (Lee et al., 2008; LeCun et al., 2015). A deep learning model
is composed of multiple layers of latent variables (hidden nodes or units) (LeCun et al.,
2015; Goodfellow et al., 2016), which learn to represent the complex statistical structure
embedded in the data, such that different hidden layers capture statistical structure of
different degrees of complexity. Researchers have found that deep learning models can
represent the hierarchical organization of signaling molecules in a cell, with latent variables
as natural representations of unobserved activation states of signaling molecules (Chen et al.,
2016; Young et al., 2017; Lu et al., 2018; Tao et al., 2020).
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Conventional neural networks behave like black boxes in that it is difficult to interpret
what signal a hidden node in the network encodes. We hypothesize that with certain
modifications inspired by the biological problem mentioned above, one may learn a partially
interpretable deep neural network so that the relationships between latent variables can be
interpreted as part of a causal chain from input to output variable. To this end, we designed
a modified deep neural network, the redundant input neural network (RINN) that allows each
input variable to directly connect to each latent variable within the deep learning hierarchy.
This redundant input structure allows one to learn direct causal relationships between an
input variable and any latent variable. This is important for learning cellular signaling
pathways, as SGAs perturb signaling proteins throughout the pathway hierarchy, not just
at the beginning. Also, without this modification any attempt at interpreting the latent
variables (by mapping to input or output space) would be more complex. We also developed a
robust pipeline for testing an algorithm’s ability to capture latent causal structure, including
causal simulated data inspired by cellular signaling pathways, a method for visualizing
the weights of a neural network, and a method for measuring precision and recall of the
causal structure. In addition, we compare the RINN with a conventional feedforward deep
neural network (DNN), a deep belief network (DBN), a RINN optimized with a constrained
evolutionary strategy, and the DM algorithm (a causal discovery algorithm).

2. Related Work

The work in this study concentrates on finding latent causal relationships when the causal
direction between inputs and outputs is known. The DM (Detect MIMIC (Multiple Indi-
cators Multiple Input Causes)) algorithm is a causal discovery algorithm for finding latent
causal relationships between inputs and outputs (Murray-Watters, 2014; Murray-Watters
and Glymour, 2015). The DM algorithm uses a series of heuristics based on conditional
independence and Sober’s criterion (Sober, 1998; Murray-Watters, 2014) (see Appendix) to
identify the latent causal structure. One limitation of the DM algorithm is that it constrains
each latent variable to be adjacent to at least one input and one output variable. This limits
the hierarchical and compositional relationships that DM can identify, which makes it less
accurate for cellular signaling pathway discovery. In addition to the DM algorithm, there
are other algorithms developed to find latent structure, including factor analysis algorithms,
algorithms that use variations of the Expectation-Maximization (EM) algorithm to find
latent structure (Friedman et al., 1997; Elidan and Friedman, 2005), and algorithms based on
fast causal inference (FCI) (Spirtes et al., 1995; Colombo et al., 2012). These algorithms are,
in general, highly constrained, intractable in high-dimensional spaces, return only a subset of
the latent causal relationships, or don’t leverage prior knowledge that input variables cause
output variables.

Recently, there has been an increased interest in the deep learning community to combine
deep learning with causal discovery. Kalainathan et al. (2018) developed an algorithm named
structural agnostic model (SAM) that trains multiple generative adversarial networks (GAN)
(Goodfellow et al., 2014), one GAN to generate each variable in X, the measured variables or
features in a dataset. Each GAN uses X−j variables (i.e., all variables in X other than Xj)
multiplied by a weight mask, aj , to generate Xj . All of the aj vectors, once learned, describe
the learned causal structure. Somewhat similar to SAM, Ke et al. (2019) also used boolean
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masks applied to inputs in an ensemble of neural networks to model the causal relationship
between observed variables and the observed variable’s parents. Lopez-Paz et al. (2017) used
supervised CNNs to predict the direction of the causal arrow between two variables in static
images and Harradon et al. (2018) built a Bayesian causal model from lower dimensional
representations (of images) learned by an autoencoder CNN. Some research in this space has
even concentrated on counterfactual inference or individual treatment effect (ITE) prediction
(Johansson et al., 2016; Hartford et al., 2017; Louizos et al., 2017; Shalit et al., 2017).

Experimenting with different architectures is a common theme in deep learning research.
Various versions of fully-connected neural networks (i.e., each node is connected to every other
node in the network) have been studied since 1990 (Fahlman and Lebiere, 1990; Wilamowski
and Yu, 2010). The dense convolutional network (DenseNet) (Huang et al., 2017) is a
fully-connected neural network that concatenates all previous feature-maps (i.e., hidden layer
outputs) into a single tensor and use this tensor as input to the next hidden layer in the
network. Highway networks (Srivastava et al., 2015) and deep residual networks (ResNets)
(He et al., 2016) are deep learning models with "skip" connections, allowing the output of a
previous hidden layer to directly influence the output of a future hidden layer, after skipping
one or more hidden layers. The RINN is perhaps most closely related to a recurrent neural
network (RNN). The RINN model can be thought of as an RNN with non-shared weights,
time-invariant (i.e., static) input, and output generated only at the last time-step (Liao and
Poggio, 2016).

3. Redundant Input Neural Network (RINN)

In this study, we desired to model inputs that directly connect to any hidden layer in a neural
network. To accomplish this, we developed the redundant input neural network (RINN)
(Figure 1 and Algorithm 1). The RINN has an extra copy of the input x directly connected
to all hidden layers after the first hidden layer. In contrast to the RINN, the inputs of a
conventional feedforward DNN are only connected to the first hidden layer. Just like a DNN,
the RINN is trained through backpropagation and stochastic gradient descent. Each hidden
layer of a RINN with redundant inputs is calculated according to

h(i) = φ(([h(i−1),x]Wi) + bi)

where h(i−1) represents the previous layer’s output vector, x is the vector input to the neural
network, [h(i−1),x] represents concatenation into a single vector, Wi represent the weight
matrix between hidden and redundant nodes in layer i−1 and hidden layer i, φ is a nonlinear
function (e.g., ReLU), and bi represents the bias vector for layer i. In contrast to a RINN, a
plain DNN calculates each hidden layer as

h(i) = φ((h(i−1)Wi) + bi).

In order to use a neural network to capture causal structure in the network’s weights, the
weights need to be regularized or constrained in some way. Without regularization, virtually
all weights in a neural network will be nonzero after training, meaning that the returned
causal structure (after interpreting nonzero weights as edges) would be much too dense. We
evaluated both L1 and L2 regularization and L1 provided far superior results for finding
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Figure 1: Redundant input neural network (RINN). A RINN with four hidden layers (h(1),
h(2), h(3), h(4), each with two nodes), two inputs (x1, x2 on bottom), three outputs
(y1, y2, y3), and three sets of redundant inputs (x1, x2 on right side). Each node
represents a scalar value and each edge represents a scalar weight. The weights
between layers are collected in weight matrices W1, W2, W3, W4, and W5.

the causal structure of our ground truth DAG (results not shown). The objective functions
for all neural network-based strategies used in this study included L1 regularization of the
weights. Therefore, for binary outputs, binary cross-entropy loss plus L1 regularization of
the weights was used as the objective function. For non-binary outputs, mean squared error
(MSE) plus L1 regularization of the weights was used. See the Appendix for a discussion of
the model selection techniques used in this work, i.e., how to find the hyperparameters (e.g.,
learning rate, regularization rate, sizes of hidden layers, etc.) for the best models.

4. Simulating Data From a Known Causal Structure

Ultimately, we are interested in biological cellular signaling systems and constructing these
causal signaling pathways from mutation and expression data. However, accurate and
complete ground truth cellular signaling pathway knowledge (i.e., causal structure) is not
available. To evaluate how well a neural network approach can discover causal structure
through its weights, we generated simulated data from an artificial causal hierarchical
structure. We first manually created a ground truth directed acyclic graph (DAG), GT , that
fit the requirements described above (i.e., hierarchical structure between a set of inputs and
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Algorithm 1 Redundant Input Neural Network (RINN)
Bias vectors omitted for clarity
Wl,a is weight matrix between hidden layer l − 1 and hidden layer l
Wl,b is weight matrix between input l − 1 and hidden layer l
hl is the vector of values representing hidden layer l
xi is the input vector for instance i
yi is the output vector for instance i
s is the number of samples in the dataset
ERROR is the objective function to be optimized

for i = 1 to s do
a1 = ReLU(xi ·W0,b)
for j = 1 to num_hid_layers do

aj = CONCATENATE(aj ,xi)
Wj = CONCATENATE(Wj,a,Wj,b)
aj+1 = ReLU(aj ·Wj)

end for
ŷi = sigmoid(aj+1 ·Wj+1,a) . for binary y
Update all W by descending their gradient:

∇WERROR(yi, ŷi)

end for

outputs). In GT (Figure 2a), the input layer is directly connected to both the first and
second hidden layers to allow us to recover direct causal relationships between inputs and
hidden variables. This structure is also the most biologically plausible way that mutations
would affect biological entities in a signaling pathway (assuming the latent variables to be
biological entities), as mutations can have an effect at any location in the signaling pathway
hierarchy, not just at one level (i.e., hidden layer) of the hierarchy. The ground truth DAG
had 16 inputs x, 16 outputs y, and two hidden layers h1, h2 (Figure 2a). We needed an
easy way to visualize GT , so we connected the nodes in a specific way to be able to generate
visibly recognizable patterns (relative to output space) for each node in GT (Figure 2 and
Section 8). Given a specific node xi in GT , these patterns (heatmaps) indicate if an output
node is affected by the value of xi, i.e., Which output nodes have xi as an ancestor? (Figure
2c, 2d).

We constructed GT with inputs x representing the presence or absence of DNA alterations
(i.e., SGAs) and the outputs y representing differentially expressed genes (DEGs). Mutation
and expression data are readily available from many sources, e.g., The Cancer Genome Atlas
(TCGA) Weinstein et al. (2013). Between these input and output layers, we envisioned a
biological signaling pathway with the hidden layer h1 closest to the inputs representing major
biological pathways and h2 representing transcription factors. Biologically, mutations (i.e.,
input nodes x) directly target transcription factors and proteins higher up in the hierarchy
(e.g., cell membrane receptors). To reflect this in GT , we allowed input mutations in x to
directly connect to nodes in h1 or h2. Each mutation affected only one node, but each node
could be affected by multiple mutations. This is similar to how biological mutations function.
GT is a crude representation of a biological signaling pathway, and one obvious omission in
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Figure 2: Ground truth DAG for simulated data and visualizing output space.

the DAG abstraction are feedback cycles, which are prevalent in biological signaling pathways.
We generated six different simulated datasets. Datasets 1-4 had 16 inputs, 16 outputs, and
5,000 instances. Datasets 5 and 6 had 650 inputs, 84 outputs, and 5,000 instances.

4.1 Simulated Data

1. Dataset 1: Matrix Multiplication with Interventions—no noise, binary input,
positive integer-valued output. We simulated data from GT by having the inputs
intervene on their adjacent hidden nodes. An "active" (i.e., 1) input intervention node
would set the value of an adjacent hidden node to 0 for that sample—intended to capture
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the effect of a biological loss-of-function mutation on a protein. Please see Algorithm 3 in
the Appendix.

2. Dataset 2: Linear Gaussian SEM—high noise, input and output ∈ R.

b ∼ N (0, σ2) σ2 ∼ U(1, 3) W ∼ ±U(0.5, 1.5)

Let GT be our ground truth DAG with nodes N (input, hidden, and output), N l
j be

node j at layer l, X l−1
i be the value of parent (i.e., direct cause) i in layer l − 1. Then

we simulate data using a structural equation model (SEM) to calculate the value of each
node N l

j in GT as

N l
j =

∑
i∈parentsGT

(jl)

W l
ijX

l−1
i + blj

3. Dataset 3: OR Logical Operator—high noise, binary. We modeled the value of
a node in GT as the output of a logical OR applied to the values of the parents of said
node. We sampled a probability, p, to represent

P (X = 1|parentsGT
(X))

for all possible binary combinations of a node’s parents’ values. p was sampled from Beta
distributions peaked close to 0.10 or 0.90 depending on if an OR operator applied to the
values of the parents evaluated to False or True, respectively. For example, to model
an OR operator with two parents, we would sample four p values, each representing a
Bernoulli distribution as follows,

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 1) ∼ Beta(90, 10)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 1) ∼ Beta(90, 10)

P (x = 1|Pa1,GT
= 1, Pa2,GT

= 0) ∼ Beta(90, 10)

P (x = 1|Pa1,GT
= 0, Pa2,GT

= 0) ∼ Beta(10, 90)

where Pa1,GT
indicates parent 1 of node x in graph GT . This sampling from Beta distribu-

tions provided a collection of Bernoulli distributions for all possible binary combinations of
parents. We then used these Bernoulli distributions to generate noisy data (noisy because
p not equal to 0 or 1) from OR operators. Please see Algorithm 4 in the Appendix, but
assume all OR operators.

4. Dataset 4: AND, OR, XOR Logical Operators—moderate noise, binary. To
increase complexity, we added AND and XOR operators to replace some of the OR
operators in Dataset 3 and re-simulated the data following a similar procedure as for
Dataset 3 (see Algorithm 4 in the Appendix). In contrast to Dataset 3, we sampled p
from Beta distributions peaked close to 0.05 and 0.95 for Dataset 4, meaning that Dataset
4 is less noisy than Dataset 3.
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5. Dataset 5: TCGA + OR—binary. We wanted to test our algorithms on higher-
dimensional, biologically-related datasets. Biological datasets with mutation and expres-
sion data, and a robust, known ground truth causal structure, to our knowledge, do not
exist. So we embedded simulated data (Dataset 3—OR) within a larger biological dataset
from TCGA to see if GT could be discovered, and to also evaluate how the different
algorithms performed simply on the prediction task for this biologically-related dataset.
To accomplish this, we obtained mutation and expression data from TCGA and used
an algorithm from (Cooper et al., 2018; Cai et al., 2019) called TCI (tumor-specific
causal inference) to perform feature selection on both the mutation and expression data,
ultimately leading to a binary dataset with 634 alterations (inputs) and 68 DEGs (outputs)
for 5,000 tissue samples. Next, we embedded simulated Dataset 3 (OR operator) into the
feature-reduced TCGA data. This generated a final dataset with 650 inputs (SGAs) and
84 outputs (DEGs) for 5,000 instances. Please see (Cooper et al., 2018; Cai et al., 2019)
for a detailed explanation of how TCI works.

6. Dataset 6: TCGA + OR, XOR, AND—binary. The same as Dataset 5, but
embedded with Dataset 4 (instead of Dataset 3).

5. Other Strategies

5.1 DNN

We compared the RINN with a feedforward DNN. A DNN learns a function mapping inputs
(x) to outputs (y) according to

f(x) = φ(· · ·φ(φ(xW1)W2) · · ·Wn) = ŷ

where Wi represent the weight matrices between layers of a neural network, φ is a nonlinear
function (e.g., sigmoid), and ŷ is the predicted output. DNNs also have bias vectors added
at each layer, which have been omitted from above for clarity. For more details about DNNs,
see Goodfellow et al. (2016).

5.2 DBN

A deep belief network or DBN (Hinton and Salakhutdinov, 2006) is a type of autoencoder,
an unsupervised DNN. The DBNs used in this paper were trained using only y data, i.e.,
DBNs learned to map y to a lower dimensional representation of y (in the hidden layers)
and then to reconstruct y from the lower dimensional representation. Error is measured by
comparing y to ŷ. We evaluated the trained "decoder" network only (i.e., the second half of
the network going from lowest dimensional representation to y) for evidence of GT latent
variables. We had difficulty recovering any of the causal ground truth graph (Figure 2a)
with a default DBN, but adding L1 regularization to the finetuning step objective function
allowed us to recover at least some of the causal structure.

5.3 Constrained Evolutionary Strategy (ES-C)

We compared the conventional RINN (using gradient descent optimization) to a RINN using an
evolutionary algorithm for weight optimization (Algorithm 2). We developed an evolutionary
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Algorithm 2 Constrained Evolutionary Strategy for Neural Network Weight Optimization
f is a vector of fitness values
Data represents all input and output data
Wi is all the weights of neural network i reshaped into a vector
pw is the set of possible weight values (e.g., {−1, 0, 1})

for i = 1 to num_generations do . for each generation
for j = 1 to population_size do . for each neural net

fj = FITNESS(Wj , Data)
end for
elites = TOP_20_PERCENT(f) . get best neural networks
for k = 1 to p do

Wk = MATE(RAND(elites), RAND(elites))
Wk = MUTATE(Wk, pw) . ∆ some Wk randomly

end for
end for
RETURN Wbest . neural network with highest fitness function

strategy (ES) to optimize the weights of a RINN to explore optimization strategies that make
it easier to interpret the weights of a neural network as causal relationships. Specifically, we
used a constrained evolutionary strategy (ES-C), where we constrained the possible values
for the weights (e.g., weight ∈ {−1,−0.5, 0, 0.5, 1}). Constraining the weights in this way
represents a non-differentiable objective function, meaning that gradient descent optimization
cannot be used. We represented an individual in the population to be evolved as a vector of
weights. This vector of weights represents a RINN. Initially these weights were set to all
zeros, then if a weight was selected for mutation (as dependent on a mutation rate), it was
randomly changed to a weight in the range of legal weight values. For a fitness function, we
used L1 regularization plus either binary cross-entropy error or squared error depending on
the dataset. ES-C was not set up to be parallelized across processors, as early prototyping
experiments suggested that ES-C would not perform nearly as well as RINN with gradient
descent optimization. See the Appendix for more information.

5.4 DM Algorithm

As another comparison, we evaluated the performance of the DM (Detect MIMIC) algorithm
(Murray-Watters and Glymour, 2015) on the first four simulated datasets. The DM algorithm
takes two tuning parameters: an alpha level for Fisher’s Z test of conditional independence
and an alpha level for Sober’s criterion. We performed an abbreviated grid search over these
tuning parameters. We selected values for the first alpha level α ∈ {0.05, 0.01, 0.001, 0.0001}
motivated by Ramsey and Andrews (2017) and values for the second alpha level α ∈
{0.1, 0.05, 0.01}. Results for the best performing combinations of tuning parameters for the
DM algorithm were reported. See the Appendix for more information.

6. Causal Assumptions

Given a dataset where the variables may be partitioned into inputs X and outputs Y , fitting
the RINN to the data results in a sparsely connected DAG GE = (VE , EE). Generally, the
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structure of a neural network has no causal meaning, however, in this section we list a set
of assumptions that connect the hidden nodes and directed edges of GE to latent causal
relationships. That is, we fit the RINN to data for the purpose of learning genuine latent
variables and causal pathways between X and Y mediated by those latent variables.

Before stating our assumptions, we note the following conventions and definitions. Let
GT = (VT , ET ) denote the true causal graph where VT may be partitioned into X, Y , and
the latent variables LT . Let GM = (VM , EM ) denote the modified graph where VM may
be partitioned into X, Y , and the latent variables LM . We construct GM from GT by: (i)
removing any latent variable that has a descendant in X or an ancestor in Y ; (ii) removing
any latent variable that does not have an ancestor in X or a descendant in Y ; (iii) removing
any edge between two members of X or two members of Y . Intuitively, the modification
procedure deletes variables and edges that are not of interest and preserves those on pathways
between X and Y . We say a latent variable is identifiable if: (i) it has no descendants in X
or ancestors in Y; (ii) its ancestors restricted to X are non-empty and unique with respect
to the other latent variables satisfying (i); (iii) its descendants restricted to Y are non-empty
and unique with respect to the other latent variables satisfying (i).

A1. The true causal graph GT is a DAG where the set of post-modification latent variables
LM is the subset of latent variables that are identifiable in LT .

In a biological context, feedback cycles are a common characteristic of molecular signaling
pathways. Assuming acyclicity is a limitation of using the methods in this study.

A2. For all w ∈ LT , x ∈ X, and y ∈ Y in GT , y is not an ancestor of w or x and there is at
least one latent variable on every path between x and y. That is, the inputs cause the
outputs mediated through latent variables.

For example, mutations in DNA cause changes in gene expression through modifications
to cell signaling. The methods developed in this study can be used with any datasets
where the causal direction between two sets of variables is known.

A3. For all w ∈ LT and y ∈ Y in GT , if there is a directed path from w to y not including
v ∈ X, then there is no directed path from w to any x ∈ X. That is, the inputs and
outputs are unconfounded.

In a biological context, where X = SGA and Y = DEG, this assumption is generally
plausible.

A4. For all x1, x2 ∈ X, x1 is not an ancestor of x2 and for all y1, y2 ∈ Y , y1 is not an ancestor
of y2. This assumptions allows for latent confounding between the members of X and
latent confounding between the members of Y .

A5. No selection bias occurred during the data collection process.

A6. Restricted Causal Markov: For conditional independence statements of the form
x ⊥⊥ y | S for S ⊆ (X ∪ Y ) \ {x, y} where x ∈ X and y ∈ Y , d -separation1 in GT

implies conditional independence in the data distribution.

1. d-separation is a criterion for reading conditional independence statements from a directed graph.
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A7. Restricted Causal Faithfulness: For conditional independence statements of the form
x ⊥⊥ y | S for S ⊆ (X ∪ Y ) \ {x, y} where x ∈ X and y ∈ Y , conditional independence
in the data distribution implies d-separation in GT .

A8. The identifiable latent structure of GT is minimal in the following sense. Let G′T be the
graph resulting from altering2 the identifiable latent structure. If G′T satisfies restricted
Markov (see A6), then the altered modified latent edges E′M satisfy |E′M | > |EM |.
This can be seen as an appeal to Occam’s razor—preferring the most parsimonious
structure.

A9. The ground truth causal relationships can be modeled with one or multiple affine
transformations plus nonlinear functions (hidden layer calculations in a neural network).

A10. The global optimum achieved by the RINN results in a DAG GE satisfying restricted
Markov and restricted faithfulness (see A6 and A7) whose hidden layers and nodes are
minimal (see A8).

This is likely the case; the RINN uses L1 regularization to encourage learning the most
parsimonious graph capable of representing the conditional.

Lemma 1 Let LR = LT \ LM be the latent variables removed during modification and π be
a path in GT between x ∈ X and y ∈ Y . The following are equivalent:

1. π is primitively inducing;

2. π is inducing relative to LR.

Proof If π is a primitively inducing, then π is inducing relative to LR by the definition
of inducing path. Suppose by way of contradiction that π is not primitively inducing, but
π is inducing relative to LR. Then every non-collider on π is a variable v ∈ LR. Pick the
closest v to x so that there are no non-colliders between v and x and consider the criteria for
membership to LR.

Suppose v does not have an ancestor in X. Then v is a parent of w ∈ X on one side and
directed into or out of v on the other side. If directed into v, then there is a directed path
from y to v. This violates A2. If directed out of v, then there is a directed path from v to a
collider u ∈ X followed by y or from v to u ∈ Y . This violates A2 or A3. Suppose v does not
have a descendant in Y . Then v is adjacent to x on one side and directed into or out of v on
the other side. If directed into v, then there is a directed path from y to v. This violates
A2. If directed out of v, then there is a directed path from v to a collider w ∈ X followed by
either y or u ∈ LR. The former violates A2. In the latter case, repeat this argument with u
in place of v and w in place of x.

Suppose v has a descendant w ∈ X. Then v is adjacent to u ∈ X on one side and
directed into or out of v on the other side. If directed into v, then there is a directed path
from y to v. This violates A2. If directed out of v, then there is a directed path from v
to t ∈ Y or from v to t ∈ X. The former violates A3. In the latter case, t is followed by

2. By altering, we mean adding and removing variables and edges such that the resulting graph differs by
more than a relabeling of the variables or a sequence of covered edge reversals.
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either y or s ∈ LR. The former violates A2. In the latter case, repeat this argument with
s in place of v and t in place of x. Suppose v has an ancestor in w ∈ Y . Then A2 is violated.

Proposition 2 The global optimum achieved by the RINN is the modified graph of the true
causal graph, that is GE = GM .

Proof Perform modification steps (i) and (ii) on GT , by Lemma 1, the resulting graph
satisfies restricted Markov and restricted faithfulness. By A4, no two members of X are
adjacent and no two members of Y are adjacent. Perform modification step (iii) to no effect.
Therefore the resulting graph satisfies restricted Markov and restricted faithfulness. By
A8 and A10, GE and GM are equivalent up to a covered edge reversal. By A1 and A3,
for all x ∈ X, y ∈ Y , and w ∈ LM , x is not a descendant of y or w and every w has an
ancestor in X. Therefore, using the definition of identifiable, we may propagate the ori-
entations from X forward making every edge orientation invariant. Accordingly, GE = GM .

The causal ground truth DAG in Figure 2a and simulated data adhere to these assumptions.
Given our assumptions, Proposition 2 states that the hidden nodes and directed edges learned
by the RINN represent the latent structure over the identifiable latent variables in the true
causal graph if the RINN reaches the global optimum. We conjecture that this result holds
in practice for local optimum given adequate model selection. The empirical results of this
paper provide support for this conjecture.

7. Balancing Sparsity and Error

In order to find simple and accurate models, we needed to modify our approach to model
selection in order to best balance sparsity of weights and prediction error. After training
a model with various combinations of hyperparameters, we selected the models (sets of
weight matrices for each trained network) that were relatively sparse and had a relatively low
prediction error. Under-regularizing leads to overfitting the data, while over-regularizing leads
to underfitting the data. We hypothesized that the models with best chances of capturing
causal relationships in their weights will be the models that optimally balance both prediction
error and sparsity. To balance this trade-off, in plots of prediction error versus sparsity (See
Appendix Figure 5), we measured the Euclidean distance from each point (model) to the
origin according to:

dx =

√√√√√
 m∑

i=1

ri∑
j=1

ci∑
k=1

|w(i)
j,k|

2

+ Lx
2

where Lx is the average validation set loss for neural network x, m is the number of weight
matrices in neural network x, ri and ci are the number of rows and columns in matrix i
respectively, and w is a scalar weight. Prior to calculating dx, we removed values outside the
95% quantile for each axis and scaled the axes using min-max scaling. The models with the
lowest dx were selected for further analysis and calculation of precision and recall of causal
structure.
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8. Visualizing a Neural Network

To increase our understanding of what the weights of a neural network capture after training,
we developed a simple visualization technique, based on matrix multiplication, according to

Mj = WjWj+1Wj+2 · · ·Wh

vj = reshape(Mj)

where Mj is an m × n matrix for layer j, m is the number of nodes in layer j, n is the
number of nodes in the output y, Wj is the weight matrix between layer j and j + 1, and
Wh is the last weight matrix. Each row in Mj represents what a single node in layer j maps
to in output space. reshape means to reshape each row of Mj to a 4× 4 matrix (assuming
n = 16) (Figure 2b). Therefore, vj is a list of 4× 4 matrices (heatmaps) for all hidden nodes
in layer j. Next, the magnitude of each value in the 4× 4 matrices is interpreted as a pixel
intensity (or heatmap intensity), and displayed as a given intensity of color (Figure 2d). In
this way, we generated 2-D heatmaps for each hidden and input node in a trained neural
network. This visualization represents the weights connecting a node to output space, or
the influence of the activation of that node on the output values (Figure 2e). The heatmap
visualizations of all nodes’ effects in output space is a representation of the causal structure
learned by a neural network.

9. Experiments

9.1 Visualizing the Weights of a Neural Network

In addition to evaluating the different deep learning strategies and distance metric (dx) for
finding causal structure, we also needed a method to quickly evaluate many networks without
relying on visual inspection. The solution to this problem came from our method to visualize
the weights of a neural network. Figure 3 shows visualizations of the weights for two different
DNNs. Each square in these visualizations represents a specific node in a neural network and
the change in the output values induced by the activation of this node (Section 8). Figure 3a
shows the ground truth patterns/visualizations based on the ground truth DAG (Figure 2a).
These are the patterns we are looking for in the weights of a network to indicate the correct
causal structure. The color of these heatmaps is of minimal importance, while the pattern in
the heatmaps is of maximal importance.

Figure 3b shows a visualization of the weights of a 3-hidden layer DNN trained on Dataset
1. If this DNN had not been regularized, then most of the hidden nodes (h1, h2, h3) in these
visualizations would appear mostly as static noise. The visualizations labeled as x show
what each of the input nodes for this DNN map to in output space. If we compare this set of
images to the ground truth input node patterns in Figure 3a (bottom), we see that the input
nodes in the DNN 100% match with the ground truth input node patterns. This example
immediately suggests a possible method for evaluating how well neural networks capture
causal structure—by calculating precision and recall based on the ground truth patterns that
should be present within these visualizations for the causal structure to be correct.
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Figure 3: DNN weight visualizations.

9.2 Precision and Recall of Causal Structure: Description and Examples

To calculate precision and recall of the causal structure, we ran the visualization algorithm
on all layers in our trained RINN, DNN, DBN, or ES-C, obtaining a vector with 16 values for
each node in the neural network, representing the influence of that node on output space. We
took the absolute value and then binarized these vectors in order to match them to the ground
truth, thus being able to calculate precision and recall. This required setting a threshold,
above which a value would be set to 1 and otherwise set to 0. We chose this threshold by
searching through the ten best models (for each dataset and strategy combination) for a single
threshold that provided the best F1 score across all ten models. The same threshold was
then used for all ten models. We obtained precision and recall measurements for each neural
network by comparing these binary vectors to ground truth binary vectors. To calculate the
ground truth vectors, we used the same algorithm as in Section 8 applied to the ground truth
binary weight matrices that represent GT . True positives (TP) here represent ground truth
hidden nodes or input nodes (remember, a node is represented as a vector of numbers in
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output space) that were captured by the weights of the trained network. False positives (FP)
represent predicted vectors from the trained network that did not match any of the ground
truth nodes or the zero vector. False negatives (FN) represent ground truth hidden nodes or
input nodes that were not captured by the weights of the trained network. When comparing
a predicted output space vector to a ground truth vector, we considered the predicted to
match the ground truth if the binary vectors were identical within ±1 value (i.e., pixel). The
network in Figure 3b achieved 100% input node precision and recall.

After examining the vector of images labeled as h1, in Figure 3b, we see that this
hidden layer by itself captures six of the seven ground truth hidden node patterns from
Figure 3a (h2 and h3 do not find any additional ground truth hidden node patterns).
The calculations for hidden node precision and recall for this DNN would be as follows:
Precision(P ) = TP

TP+FP = 6
6+0 = 1.00, Recall(R) = TP

TP+FN = 6
6+1 = 0.86. So despite

regularization encouraging the DNN to represent patterns as simply as possible, this DNN
did not capture the ground truth hidden node that is a combination of the "plus sign" and
"little square" (second from the right in Figure 3a top). Nodes 17 and 19 in Figure 2a and 2e
are referred to as "combination" nodes, as they represent a combination of two other nodes.
Figure 3c shows a visualization of a different DNN that did not capture the causal structure
as nicely as Figure 3b. The input nodes map 100% correctly, but there are at least three FPs
and only four TPs found within the hidden layer nodes. P = 4

4+3 = 0.57, R = 4
4+3 = 0.57.

The first hidden layer of a DNN must capture all the hidden node patterns required to
completely map inputs to outputs, as it does not have another chance to capture information it
may have missed in the first hidden layer later in the network. The hidden layer representations
of a DNN are alternative representations of all the information in the input necessary to
calculate the output. This is in contrast to a RINN, which can simply learn the patterns at
a later hidden layer because a RINN has redundant inputs. So the hidden layers of a RINN
are not necessarily alternative representations of the input, but they capture salient aspects
of the input data in some way desirable to calculate the output.

Figure 4 shows the visualizations for all weight matrices in two different trained RINNs.
The RINN visualized in Figure 4a is an example of a network that scores 100% precision
and recall for both input and hidden nodes. To evaluate the input nodes of a RINN, all
input node heatmaps for a particular input are summed across all redundant layers of the
network, and this final sum of heatmaps is compared to the known ground truth for that
input. We can see in Figure 4a that there is no need to sum the heatmaps because the input
nodes learn the correct mapping (Figure 3a (bottom)) at only a single redundant input layer
(for each input node). When we look at the heatmaps for the hidden nodes, we see that all
seven ground truth patterns from Figure 3a (top) are present in either h5, h6, h7, or h8.
Figure 4b shows the visualization of a different RINN that doesn’t score as well as Figure 4a.
The input nodes of this RINN achieve 100% precision and recall. But the hidden nodes for
this RINN show four FPs, six TPs (although one of the combination nodes, i.e., node 19 in
Figure 2c, 2d, and 2e, is very close to missing the threshold), and one FN (7− 6 = 1). The
final precision and recall for the hidden nodes would be: P = 6

6+4 = 0.60, R = 6
6+1 = 0.86.

Precision and recall for the TCGA+OR and TCGA+OR, XOR, AND datasets were
calculated based only on the recovery of the simulated data ground truth—as we don’t know
the ground truth for the TCGA part of the data and therefore have no way to calculate
precision and recall.
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Figure 4: RINN weight visualizations.

9.3 Precision and Recall of Causal Structure: Results

The major purpose of this work was to compare the ability of different neural network-based
strategies to find causal structure in their weights. We were also interested in the limitations
of these strategies depending on the characteristics of the data. Table 1 shows the average
input node precision and recall results for all datasets and strategies used in this study. Table
1 also shows the average test set error and AUROC (where appropriate) for all strategies
and datasets. This table is best thought of as showing how well the input mapped to output
without indicating the exact causal structure in the weights, i.e., this metric does not indicate
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Input Mapping Test Set
Simulated Data Strategy precision recall F1 error AUROC

(1) Matrix mult. w/ interv.

DBN NA NA NA 0.05± 0.1 NA
DNN 1.00± 0.0 1.00± 0.0 1.00± 0.0 0.01± 0.0 NA
RINN 1.00± 0.0 1.00± 0.0 1.00± 0.0 0.00± 0.0 NA
ES-C 0.95± 0.1 1.00± 0.0 0.97± 0.0 0.03± 0.0 NA
DM 0.31 1.00 0.48 NA NA

(2) Linear Gaussian

DBN NA NA NA 1.82± 0.1 NA
DNN 0.94± 0.1 0.93± 0.0 0.93± 0.1 9.31± 0.2 NA
RINN 0.98± 0.0 1.00± 0.0 0.99± 0.0 9.19± 0.1 NA
ES-C 0.91± 0.1 0.91± 0.0 0.90± 0.1 10.12± 0.2 NA
DM 0.69 1.00 0.81 NA NA

(3) OR

DBN NA NA NA 0.55± 0.2 0.68± 0.2
DNN 0.99± 0.0 0.98± 0.1 0.98± 0.0 0.56± 0.0 0.75± 0.0
RINN 0.96± 0.1 1.00± 0.0 0.98± 0.0 0.56± 0.0 0.75± 0.0
ES-C 0.81± 0.2 0.95± 0.1 0.87± 0.1 0.57± 0.0 0.74± 0.0
DM 0.56 1.00 0.72 NA NA

(4) OR, XOR, AND

DBN NA NA NA 0.58± 0.1 0.57± 0.1
DNN 0.78± 0.2 0.99± 0.0 0.87± 0.1 0.45± 0.0 0.84± 0.0
RINN 0.92± 0.1 0.91± 0.1 0.91± 0.1 0.45± 0.0 0.84± 0.0
ES-C 0.46± 0.2 0.65± 0.2 0.53± 0.2 0.41± 0.0 0.87± 0.0
DM 0.44 1.00 0.61 NA NA

(5) TCGA+OR
DBN NA NA NA 0.34± 0.2 0.88± 0.1
DNN 0.90± 0.1 0.86± 0.2 0.88± 0.1 0.42± 0.0 0.86± 0.0
RINN 0.95± 0.1 0.98± 0.0 0.96± 0.1 0.40± 0.0 0.87± 0.0

(6) TCGA+OR, XOR, AND
DBN NA NA NA 0.53± 0.2 0.64± 0.2
DNN 0.79± 0.3 0.90± 0.3 0.84± 0.3 0.42± 0.0 0.86± 0.0
RINN 0.78± 0.1 0.98± 0.0 0.87± 0.0 0.43± 0.0 0.86± 0.0

Table 1: Average input node precision and recall across ten best models. Do RINN input
nodes capture known structure in their weights when mapped to output space?
Best value of the 5 strategies in bold.

how the latent variables interacted to achieve the output. The values in Table 1 (and Table
2) represent the average across the ten models with the lowest dx for each dataset/strategy
combination.

Table 1 shows that both DNN and RINN performed quite well at mapping input to
output across all datasets, with the RINN performing a little better in terms of precision
and recall. The RINN performed noticeably better than the DNN on the Linear Gaussian
and TCGA+OR datasets. The test errors and AUROCs for DNN and RINN were almost
identical. This means that if one captures more causal structure than the other, it isn’t
due to one strategy being able to predict better than the other, but rather due to some
other difference. ES-C performed similar to DNN and RINN on the first three datasets, but
markedly worse on the OR, XOR, AND dataset in terms of precision and recall. ES-C had
errors and AUROCs that were similar to DNN and RINN (and on Dataset 4 were better than
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RINN and DNN). The DM algorithm, despite getting 100% recall, performed very poorly on
all datasets. This is because the DM algorithm isn’t identifying any false-negatives, just a
lot of false-positives and maybe 1 or 2 true-positives.

The results in Table 2 are the main results of this work and show how well the ground truth
causal structure was captured by the hidden nodes of each of the strategies for each dataset.
The RINN had a higher F1 score than all other strategies for most datasets, and consistently
had the highest recall across all datasets and strategies. RINN and DNN had F1 scores
within 0.01 of each other on datasets 4 and 6. The RINN performed considerably better than
any other strategy on the Linear Gaussian dataset. The Linear Gaussian dataset was also
the dataset with the most noise, so it is encouraging that the RINN was able to considerably
outperform all other strategies on this noisy dataset, as we suspect that most biological data
has a high amount of noise. There didn’t seem to be much of a difference between continuous
and binary datasets—the strategies were still able to learn causal structure from completely
binary inputs and outputs (Datasets 3 and 4). Rather, the most important characteristic of
the datasets seemed to be the amount of noise. The RINN outperformed all other strategies
on the TCGA+OR dataset and performed similarity to a DNN on the TCGA+OR, XOR,
AND dataset. These datasets had inputs and outputs of much higher dimensionality than any
of the other simulated datasets, and shows the RINNs utility even in a higher dimensionality
setting.

ES-C performed moderately well, but was outperformed by DNN and RINN on all
datasets except Linear Gaussian, where ES-C outperformed DNN. This suggests that using a
parallelized evolutionary algorithm is a direction worth pursuing for finding latent structure,
as ES-C performed well despite relatively less model selection, when compared to RINN,
after taking into account that ES-C has more hyperparameters to be tuned than RINN. ES-C
was also trained on significantly less data (20%) than the other strategies to decrease the
runtime of ES-C even further. ES-C wasn’t run on datasets 5 and 6 because of the very
long running time it had on the small datasets, meaning that running on the much larger
datasets would be impractical. The DM algorithm and DBN performed quite poorly across
all datasets, with the DM algorithm performing the worst on most datasets (note that some
of the DM algorithms assumptions are violated by GT ). The DM algorithm wasn’t run on
datasets 5 and 6 because of its poor performance on the smaller datasets. Overall, the RINN
was better able to recover the causal structure in Figure 2a than any other strategy explored
in this work.

10. Discussion

The results presented here show that deep learning models (RINN and DNN with L1

weight regularization) can learn latent variables that capture, with high accuracy (precision
and recall), the compositional structure generated by causal relationships in simulation
experiments. In doing so, the models are capable of correctly ordering the hierarchical
relationships among latent variables that encode the signal of the data-generating process,
i.e., the causal relationships among latent variables. The RINN performed better than
the DNN (and all other algorithms) across almost all metrics measured for recovery of the
ground truth hidden nodes. By more accurately capturing the statistical structure of the
data-generating process, the RINN can better recover the causal relationships among the
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Hidden Mapping

Simulated Data Strategy precision recall F1

(1) Matrix mult. w/ interv.

DBN 0.73± 0.32 0.61± 0.22 0.66± 0.26
DNN 0.97± 0.07 0.80± 0.07 0.87± 0.06
RINN 1.00± 0.00 0.93± 0.08 0.96± 0.04
ES-C 0.72± 0.08 0.80± 0.13 0.76± 0.08
DM 0.33 0.29 0.31

(2) Linear Gaussian

DBN 0.35± 0.13 0.57± 0.17 0.43± 0.14
DNN 0.34± 0.30 0.43± 0.24 0.37± 0.26
RINN 0.65± 0.11 0.87± 0.18 0.74± 0.13
ES-C 0.41± 0.10 0.54± 0.06 0.46± 0.09
DM 0.33 0.29 0.31

(3) OR

DBN 0.20± 0.30 0.16± 0.23 0.17± 0.25
DNN 0.88± 0.17 0.76± 0.15 0.81± 0.14
RINN 0.87± 0.19 0.83± 0.13 0.85± 0.15
ES-C 0.71± 0.22 0.57± 0.18 0.63± 0.19
DM 0.33 0.29 0.31

(4) OR, XOR, AND

DBN 0.38± 0.22 0.33± 0.19 0.33± 0.17
DNN 0.87± 0.18 0.79± 0.17 0.82± 0.16
RINN 0.81± 0.17 0.83± 0.11 0.81± 0.11
ES-C 0.44± 0.09 0.74± 0.16 0.55± 0.10
DM 0.29 0.29 0.29

(5) TCGA+OR
DBN 0.08± 0.17 0.06± 0.14 0.08± 0.15
DNN 0.29± 0.17 0.59± 0.26 0.33± 0.12
RINN 0.37± 0.25 0.63± 0.24 0.41± 0.19

(6) TCGA+OR, XOR, AND
DBN 0.04± 0.08 0.16± 0.22 0.07± 0.12
DNN 0.57± 0.26 0.74± 0.16 0.61± 0.20
RINN 0.53± 0.24 0.80± 0.10 0.60± 0.17

Table 2: Average hidden node precision and recall across ten best models. Do RINN hidden
nodes capture known structure in their weights when mapped to output space?
Best value of the 5 strategies in bold.

latent variables. These results indicate that allowing inputs to directly access latent variables
encouraged the latent variables to capture salient statistical structure connecting input and
output variables. It has not escaped our notice that the RINN architecture simplifies the
interpretability of a deep learning model. The architecture of the RINN allows hidden nodes
to be more easily mapped to a set of input variables than a DNN, as inputs in a RINN
are directly connected to each hidden node. A set of input variables can then be used to
represent a hidden node, and the hidden nodes become partially interpretable. That is, one
can interpret that a latent variable encodes the signal of specific input variables. These
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results illustrate two main characteristics (advances) brought forward by the RINN model:
the capability of learning a partially interpretable deep learning model and the capability of
learning causal relationships.

We conjecture that the capability of the RINN model to learn causal structure lies in its
capability of mimicking the data-generating process. Here we employed a set of hierarchically
organized latent variables to mimic the data-generating process. We hypothesized that the
most efficient way for a model to accurately capture the relationships between input and
output is to force latent variables to mimic the data-generating process, and we applied
L1 penalization (i.e., following Occam’s Razor or the minimal description length principle
(Rissanen, 1978)) to maximize the amount of information encoded by each latent variable
with respect to both input and output variables. Interestingly, both RINN and DNN were
capable of learning the data-generating process. Furthermore, if the data-generating process
involves a series of causal relationships that lead to compositional statistical structure, the
model can naturally capture such information. Hence, we hypothesize that if a deep learning
model is initially set up with an architecture that is sufficient to enclose the causal structures
of the data generating process, then one can employ a parameter-searching approach to learn
the causal structure among latent variables, in contrast to an explicit search in structure
space. In terms of complexity, searching through the parameter space of a deep learning
model can be done with polynomial complexity, whereas searching through the structure
space of a set of variables is super-exponential, and greedy algorithms are often used to
reduce the complexity.

There are some limitations relevant to this work. When interpreting the weights of a
RINN (or DNN) as a causal graph, it is necessary to look at the values of all the weights
in a trained network and, based on a threshold, decide which weights are significant (i.e.,
edges in a graph) and which are not. Using L1 regularization causes the network to set
most of the values in the weight matrices to small numbers, but in our experiments very
few of the weights are actually zero—rather there are many weights with values in the
interval [0.0001, 0.5]. This thresholding problem can be improved by using non-differentiable
optimization procedures that constrain the allowed values for weights in a neural network
(e.g., ES-C). Another limitation is that calculating precision and recall did not explicitly
take into account the ordering of the nodes. Anecdotally, after looking through hundreds of
trained networks, we very rarely observed incorrect ordering of causal structure. Using L1

regularization encourages the network to learn nodes in the correct order and hierarchy, as
learning GT represents the weight structure with the lowest number of edges.

The evolutionary strategy explored here provided promising results despite limited model
selection and data, and more sophisticated versions are worth exploring in future experiments.
Modifying the RINN by using differential regularization and faster evolutionary algorithms,
as well as extending the causal framework developed here could lead to improvements in
the interpretability of deep neural networks and in the use of deep learning models for the
discovery of latent causal structure.
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Appendix A. Model Selection

For the deep learning strategies, each simulated dataset was separated into training, validation,
and test sets according to the following ratio 0.75/0.15/0.10, respectively. We wanted to
avoid the overfitting that often occurs if using a single validation dataset, so using the 90%
(training + validation) split, we randomly selected 15% for one validation set (while training
on the 75% remaining data) and a different 15% for the other validation set (while again
training on the remaining 75%), for a total of two validation sets. We used a combined
random and grid search approach (Bengio, 2012; Hinton, 2012) to select the hyperparameters
(learning rate, regularization rate, size of hidden layer, etc.) for the best models with the main
objective of finding the optimal balance between sparsity and prediction error to encourage
the discovery of latent causal structure. See Figure 5 for example model selection results.

Our search through hyperparameter space varied somewhat depending on the data and
the deep learning strategy being evaluated. Datasets 5 and 6 were considerably larger than
the other simulated datasets as they contained a large amount of real TCGA data. This
increased the number of hyperparameters to be evaluated (i.e., more hidden layer sizes
to search through because the input was larger), so we performed model selection on 100
more sets of hyperparameters for these larger datasets. Also, DNNs, DBNs, and ES-C have
additional hyperparameters to search through relative to the RINN. For DNNs and DBNs,
we need to find the optimal number of hidden layers (whereas the structure of the RINN
allows one to largely avoid determining the ideal number of hidden layers—Section 3). For
simplicity, we assumed all DNN hidden layers to be of the same size. However, DBN model
selection uses the decreasing nature of the hidden layers as a driving force to learn the most
salient aspects of the data. Therefore, DBN model selection included searching over different
sizes of the hidden layers for each of the hidden layers. This means more hyperparameters to
search through. The additional hyperparameters for ES-C included, elite ratio, mutation
rate, and set of legal weight values.

For binary outputs, binary cross-entropy plus L1 regularization was used as the objective
function. For non-binary outputs, mean squared error (MSE) plus L1 regularization was
used. Almost all of the best performing models used ReLU (Rectified Linear Unit) activation
functions, although we performed model selection using sigmoid and tanh activation functions
as well.

A difference between the RINN and a DNN in this paper is that the RINN was always
trained with eight hidden layers. We hypothesize (for eventually using this in a biological
setting) that most biological pathways will not have more than an 8-level hierarchy. Im-
portantly, since copies of the input are available to use at each hidden layer (should the
algorithm decide to use it), we don’t need to determine the best number of hidden layers (as
a model selection hyperparameter)—this means less model selection is required for RINNs.
If the optimal way to learn the structure in the data with a RINN is by using a 3-hidden
layer network, the RINN will learn nonzero weights starting with the copy of the input that
is connected to hidden layer 6. This would create a 3-hidden layer network (hidden layers 6,
7, and 8), with all weights in the network before the redundant input connected to hidden
layer 6 being equal to 0.0. This happens because of L1 regularization, which constrains the
RINN to map input to output using as few weights as possible. If there is reason to think
that there may be more hierarchical levels in a particular dataset, the number of maximum
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Strategy Datasets 1,2,3,4 Datasets 5,6
RINN 440 540
DNN 732 832
DBN 940 1040
ES-C 500 NA

Table 3: Number of sets of hyperparameters evaluated for each deep learning strategy.

hidden layers can always be increased with a RINN or treated as a hyperparameter and
tuned using model selection.

For ES-C, we performed model selection over multiple hyperparameters including, elite
ratio (percent of population saved to mate and produce the next generation), mutation
rate, regularization rate, and the legal weight values. We used a population size of 200 and
evolved for up to 13,000 generations or epochs. The MATE function involved choosing two
individuals in the elite population and randomly combining 50% of the weights from one
individual with 50% of the weights from the other individual (Algorithm 2). The evolutionary
strategy used in this work was not set up to be parallelized across processors, as early
prototyping experiments suggested that ES-C would not perform nearly as well as RINN.
This, unfortunately, reduced the amount of model selection we could perform in a timely
manner. To speed up ES-C, we only trained on 20% of the data that was used to train the
other algorithms. Testing 500 sets of hyperparameters on one dataset took approximately
three weeks on a single desktop computer. See Table 3 for a breakdown of the number of
sets of hyperparameters that were evaluated for each strategy.

Figure 5 shows model selection results for RINNs on simulated Dataset 5. These are
typical model selection results across all deep learning strategies and datasets. Figure 5a
shows the validation set error and the sum of the absolute value of all weights in a network
for 1,080 (540 times two validation sets) fully trained RINNs. There is a concentration of
networks (shown as blue circles) in the lower left corner of this figure. It is within these
models that we hypothesize one will find the models with the highest probability of capturing
the causal structure of the data within their weights. Figure 5b shows a magnification of
the lower left of Figure 5a, and here it becomes apparent that model selection based solely
on prediction error or sparsity (sum of the absolute values of the weights) is inadequate.
We also don’t know, 1. Will deep learning strategies capture causal relationships in their
weights? and 2. If they do capture this structure in their weights, how can we identify them
during model selection (i.e., Where would these models be located in the plots in Figure 5?)?
We hypothesized that the models with best chances of capturing causal relationships in their
weights will be the models that optimally balance both prediction error and sparsity (i.e., the
models in bottom left of Figure 5a). To quantify this hypothesis and provide a ranking of the
most optimal models, we measured the distance between each model’s point location in the
plot in Figure 5b and the origin, and used this as a metric to rank the models (Section 7 for
more details). We hypothesize that the models closer to the origin (using the distance metric
described above) would better capture the ground truth causal structure in their weights.
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Figure 5: Measuring euclidean distance to rank model selection results.

Appendix B. DM Algorithm

Sober’s criterion is used to determine the presence of latent variables between inputs and
outputs (i.e., causes and effects) when inputs are known to cause outputs. If two outputs
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are independent of one another when conditioned on their corresponding causal inputs, then
there is no latent variable between these inputs and outputs. If not conditionally independent,
then there is a latent variable present (Murray-Watters, 2014).

The assumptions required by the DM algorithm are somewhat similar to the assumptions
required for the RINN. There are a few differences between the assumptions made by each
algorithm. The DM algorithm requires each latent variable to have have at least one observed
cause and one observed effect; however, the RINN can represent a latent variable without an
observed cause through the use of a nonzero bias node. The DM algorithm also assumes
that there is only one directed path between any two observed variables, meaning that each
output variable has only one directed edge into it. This is a very limiting assumption for
our purposes and the RINN algorithm does not assume this. Biologically, this assumption
is violated as there is often redundancy in cellular signaling pathways and many ways to
activate a given protein (e.g., transcription factor). The DM algorithm is also dependent
on conditional independence tests, which have additional hyperparameters that need to
be set. In general, the DM algorithm has more constraints than the RINN algorithm.
However, the correctness of the RINN is dependent upon reaching the global optimum,
which is most often not the case when performing gradient descent to optimize neural
networks. Another major difference between the RINN and the DM algorithm is that the
DM algorithm only returns a causal structure (without parameterization), whereas the RINN
returns a causal structure and parameterization. The DM algorithm is available in Tetrad
(http://www.phil.cmu.edu/tetrad/, https://github.com/cmu-phil/tetrad).

Appendix C. Pseudocode

Algorithm 3 Simulate Data using Matrix Multiplication and Interventions
p is the Bernoulli success probability . probability that mutation is present
s is the number of samples we want to generate
Data is a container for the simulated data
Wl is the GT weight matrix between hidden layer l − 1 and l
hl is the vector of values representing hidden layer l
Wx is a ground truth matrix with all input node adjacencies

p = 0.10
for i = 1 to s do

SAMPLE x ∼ B(16, p) . Bernoulli Trials
h1 = [1, 1, 1, 1]>

for j = 1 to 2 do
set nodes in hj targeted by x to 0 . use Wx

hj+1 = hjWj+1

end for
SAVE x and hj+1 in Data

end for
return Data
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Algorithm 4 Simulate Data from AND, OR, XOR Logical Operators
GT = (V,E) . ground truth DAG
PARENTS(node) returns binary values of the parents of node
X is a n×m matrix
Data is a n×m matrix
D is a container of Bernoulli distributions
s is the number of samples we want to generate

for node in V do
op = RANDOM_CHOICE(AND,OR,XOR)
for each possible binary combo, b, of parents of node do

if op(b) is True then
SAMPLE Dnode,b ∼ Beta(95, 5)

else if op(b) is False then
SAMPLE Dnode,b ∼ Beta(5, 95)

end if
end for

end for

SAMPLE X ∼ U(0, 1)
for i = 1 to s do

for node in V do . start from input and go to output
b = PARENTS(node)
Datai,node = Dnode,b < Xi,node

end for
end for
return Data
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